МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

Некоммерческое акционерное общество «Казахский национальный исследовательский технический университет имени К.И.Сатпаева»

Школа транспортной инженерии и логистики имени М.Тынышпаева

Направление образовательной программы «Логистика»

Толеген Дамир Айтбайұлы

Использование блокчейн технологии в управлении цепочки поставок

дипломная Работа

6В11301 - Транспортные услуги

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

Некоммерческое акционерное общество «Казахский национальный исследовательский технический университет имени К.И.Сатпаева»

Школа транспортной инженерии и логистики имени М.Тынышпаева

Направление образовательной программы Логистика

допущен к защите

И.о.руководителя направления образовательной программы «Логистика», к.т.н., ассоц. профессор Бектилевов А.Ю

у» 06 2025 г.

дипломная работа

На тему: «Использование блокчейн технологии в управлении цепочки поставок»

6В11301 - «Транспортные услуги»

Выполнил

Рецензент к.т.н. ассоптирофессор

международный транспортноманитерный университет

Аманова М.В.

105 2025 г.

Толеген Д.А.

Научный руководитель

к.тум, ассоц.профессор

Пубац Избаирова А.С.

2025 г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

Некоммерческое акционерное общество «Казахский национальный исследовательский технический университет имени К.И.Сатпаева»

Школа транспортной инженерии и логистики

Направление образовательной программы «Логистика»

6В11301 – Транспортные услуги

УТВЕРЖДАЮ

Руководитель направления образовательной программы «Логиетика», к.т.н., доцент Муханова Г.С.

ЗАЛАНИЕ на выполнение дипломной работы

Обучающемуся Толеген Дамиру Айтбайұлы

Тема: Использование блокчейн технологии в управлении цепочкой поставок

Утвержден приказом Член Правления - проректор по академическим вопросам Ускенбаева P.K. № 26-П/Ө om 29.01.2025 г.

Срок сдачи законченной работы «20» май 2025 г.

Исходные данные к дипломной работе: Глобальные аналитические отчёты по блокчейнрынку, Материалы о проблемах в управлении цепочками поставок, особенно в мясной отрасли, Правила транспортировки, хранения, упаковки, маркировки мяса в Республике Казахстан, Правила транспортировки и убоя животных в Республике Казахстан,

Краткое содержание дипломной работы: анализ современного состояния рынка блокчейн технологи; блокчейн технологии в управлении цепочки поставок, использование блокчейн

технологии в управлении цепочки поставок.

Перечень графического материала (с точным указанием обязательных чертежей): Введение; анализ современного состояния рынка блокчейн технологии; факторы интереса к блокчейн технологиям; блокчейн технологии в управлении цепочки поставок; анализ рынка мяса Казахстана; традиционная цепочка поставок мяса; факторы, подрывающие безопасность мясной продукции; использование блокчейн технологии в управлении цепочки поставок; предложение по внедрению блокчейн-системы в управление мясной цепи поставок; экономическое обоснование проекта; интересы участников цепи; SWOT-анализ внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане; заключение Представлены <u>15</u> слайдов презентации работы

Рекомендуемая основная литература: Отчет Block Data «Blockchain adoption by the world's largest companies»; Пастбищные ресурсы Республики Казахстан; Бюро национальной

статистики Республики Казахстан на начало 2025 года.

ГРАФИК подготовки дипломной работы (проекта)

Наименование разделов, перечень разрабатываемых вопросов	Сроки представления научному руководителю	Примечание
Раздел 1. Анализ современного состояния рынка блокчейн технологии	14.03.2025	Allysaup
Раздел 2. Блокчейн технологии в управлении цепочки поставок	03.04.2025	Alysaup
Раздел 3. Использование блокчейн технологии в управлении цепочки поставок	19.04.2025	A lysaup

Подписи

Консультантов и нормоконтролера на законченную дипломную работу (проект) с указанием относящихся к ним разделов работы (проекта)

Наименования разделов	Консультанты, Ф.И.О. (уч. степень, звание)	Дата подписания	Подпись
Нормоконтролер	Болатқызы С., к.э.н., ассоц.профессор	27.0S. 2025	Frien

Научный руководитель

Задание принял к исполнению обучающийся

20 0

Избаирова А.С.

Толеген Д.Т.

Дата

«30» 01

((подпись)

2025 г.

АННОТАЦИЯ

В данной дипломной работе рассматривается применение блокчейнтехнологий в управлении цепочками поставок. Проанализированы глобальные тенденции развития данной технологии и ключевые причины её популярности в бизнесе, включая рост объёма данных, необходимость в прозрачности и повышении надёжности операций. Особое внимание уделено проблемам мясной отрасли Казахстана, таким как низкий уровень цифровизации, слабая прослеживаемость продукции и риски фальсификации информации. В работе предложена концептуальная модель внедрения блокчейна в логистические процессы и проведено экономическое обоснование целесообразности её применения.

АҢДАТПА

Бұл дипломдық жұмыста жеткізілім тізбегін басқаруда блокчейн технологияларын қолдану мәселесі қарастырылады. Аталған технологияның жаһандық даму үрдістері мен бизнес саласында танымал болу себептері, соның ішінде деректер көлемінің өсуі, ашықтыққа және операциялардың сенімділігін қажеттілік Жұмыста арттыруға деген талданады. Казақстанның өнеркәсібіндегі цифрландыру деңгейінің төмендігі, өнімді қадағалау мүмкіндігінің әлсіздігі және ақпаратты қолдан бұрмалау тәуекелдері сияқты өзекті мәселелерге ерекше назар аударылған. Блокчейнді логистикалық удерістерге енгізудің тұжырымдамалық моделі ұсынылып, оны қолданудың экономикалық негіздемесі жасалған.

ANNOTATION

This thesis explores the application of blockchain technologies in supply chain management. It analyzes global trends in the development of this technology and key reasons for its growing popularity in business, including the increasing volume of data, the need for transparency, and improved operational reliability. Special attention is given to challenges in Kazakhstan's meat industry, such as low levels of digitalization, weak traceability, and risks of information falsification. The study proposes a conceptual model for integrating blockchain into logistics processes and provides an economic justification for its implementation.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	9				
1 АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ РЫНКА БЛОКЧЕЙН	11				
ТЕХНОЛОГИИ					
1.1 Определение и принципы технологии блокчейн	11				
1.2 Обзор глобального рынка блокчейн-технологий	11				
1.3 Hyperledger Fabric как пример корпоративной платформы	14				
1.4 Причины потребности в использовании блокчейна в цепочках поставок	16				
2 БЛОКЧЕЙН ТЕХНОЛОГИИ В УПРАВЛЕНИИ ЦЕПОЧКИ ПОСТАВОК	19				
2.1 Общие сведения блокчейн технологии в цепи поставок					
2.2 Анализ рынка мяса Казахстана	20 23				
2.3 Традиционная цепочка поставок мяса					
2.4 Факторы, подрывающие безопасность мясной продукции					
3 ИСПОЛЬЗОВАНИЕ БЛОКЧЕЙН ТЕХНОЛОГИИ В УПРАВЛЕНИИ	36				
ЦЕПОЧКИ ПОСТАВОК					
3.1 Анализ зарубежной практики	36				
3.2 Предложение по внедрению блокчейн-системы в управление мясной					
цепи поставок					
3.3 Экономическое обоснование проекта	50				
3.4 Интересы участников цепи	52				
3.5 SWOT-анализ внедрения блокчейн-системы для отслеживания цепочки	54				
поставок говядины в Казахстане					
ЗАКЛЮЧЕНИЕ	59				
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	60				
Приложение А	63				

ВВЕДЕНИЕ

В условиях стремительного развития цифровых технологий и глобализации обеспечения рынков вопросы прозрачности, эффективности логистических процессов приобретают особую актуальность. всё Современные цепочки поставок становятся более сложными многоуровневыми, требует внедрения инновационных обеспечивающих прослеживаемость и контроль на каждом этапе движения продукции. Одним из наиболее перспективных инструментов, способных обеспечить высокий уровень доверия между всеми участниками логистического процесса, является технология блокчейн. ключевые характеристики данной технологии – это неизменяемость данных, децентрализация и возможность автоматической верификации операций. Эти характеристики открывают новые горизонты в управлении цепочками поставок.

Актуальность темы исследования. Мясная промышленность Казахстана, являясь важной частью агропромышленного комплекса, на сегодняшний день сталкивается с рядом системных проблем. Среди них – фальсификация ветеринарных И сопроводительных документов, недостаточный цифровизации, слабый контроль за происхождением продукции. Всё это оказывает негативное влияние на внутреннюю продовольственную безопасность, доверие со стороны потребителей и конкурентоспособность казахстанской продукции на внешних рынках. В этих условиях становится особенно важным внедрение современных цифровых решений, обеспечивающих достоверную информацию о происхождении и перемещении Блокчейн-технология, благодаря своей способности формировать надёжную и прозрачную систему учёта, представляет собой эффективный инструмент для решения указанных проблем, ЧТО И определяет актуальность исследования.

Целью данной дипломной работы является анализ возможностей и разработка модели применения блокчейн-технологии в управлении цепочкой поставок мяса в Республике Казахстан.

Для реализации поставленной цели необходимо выполнение следующих задач:

- рассмотреть теоретические аспекты технологии блокчейн и проанализировать её потенциал в логистике и управлении цепочками поставок;
- провести анализ текущего состояния мясной отрасли в Казахстане и выявить основные логистические проблемы;
- изучить международный опыт внедрения блокчейн-решений в управлении цепочкой поставок;

- разработать концептуальную модель внедрения блокчейна- технологии в цепочку поставок мяса;
 - провести экономическое обоснование предлагаемых решений;
- оценить потенциальные выгоды и риски от внедрения блокчейна с использованием метода SWOT-анализа.

Объектом дипломной работы выступают процессы управления цепочкой поставок мясной продукции.

Предметом исследования является применение блокчейн-технологий для повышения прозрачности, надёжности и эффективности логистических операций в мясной отрасли Республики Казахстан.

1 АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ РЫНКА БЛОКЧЕЙН ТЕХНОЛОГИИ

1.1 Определение и принципы технологии блокчейн

Блокчейн представляет собой технологию построения цепочки связанных между собой блоков, в каждом из которых содержатся определённые данные и криптографическая ссылка на предыдущий блок. Эта связь создаётся благодаря хеш-функций и цифровых подписей, что делает данные в блокчейне практически неизменяемой: любая попытка изменить данные в одном блоке потребует пересчёта всех последующих, а это практически невозможно без согласия большинства участников сети. В отличие от традиционных баз данных, информация в блокчейне хранится распределённо у всех участников сети. Существуют разные виды блокчейнов. Первые это публичные (открытые) – любой может участвовать в проверке и добавлении данных (например, Віtcoin, Ethereum). Вторые это приватные (закрытые) – доступ ограничен определённым кругом участников (например, корпоративные решения для банков). Гибридные – сочетают элементы открытости и контроля, позволяя гибко настраивать правила доступа.

1.2 Обзор глобального рынка блокчейн-технологий

Технология блокчейн, помимо криптовалют, нашла широкое применение в таких областях, как логистика, финансы и управление данными, благодаря своей прозрачности, безопасности и децентрализации.

Согласно различным исследованиям, рынок блокчейн-технологий демонстрирует устойчивый и стремительный рост. Так по данным компании MarketsandMarkets, агентство по подготовке маркетинговых и аналитических исследований, в 2024 году объем рынка блокчейнов оценивается в 20,1 млрд долларов США, а к 2029 году ожидается его увеличение до 249 млрд долларов при среднегодовом темпе роста 65,5%. Аналитики из Precendence Research, канадской исследовательской компании, занимающиеся прогнозами высокотехнологичных рынков, прогнозируют увеличение рынка с 26,91 млрд долларов в 2024 году до 1879,3 млрд долларов к 2034 году при среднегодовом темпе роста 52,9%. Схожую тенденцию отмечает и Fortune Business Insights, международная консалтинговая фирма, предоставляющая аналитические отчеты для бизнеса. Согласно их данным, рынок блокчейнов увеличится с 27,85 млрд долларов в 2024 году до 746,41 млрд долларов к 2032 году, при среднегодовом темпе роста 49,7%. [1-3]

Таким образом, анализ представленных исследований подтверждает, что блокчейн-технологии продолжают распространяться и привлекать интерес со стороны бизнеса. Прогнозируемый рост рынка, отражённый в отчетах разных аналитических агентств, указывает на укрепление роли блокчейна как одной из важных технологических основ для развития цифровой экономики (рисунок 1).

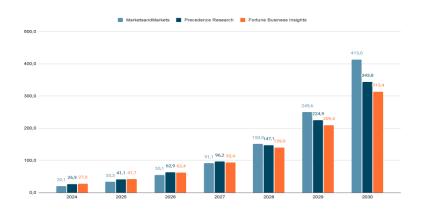


Рисунок 1 - Сравнительный анализ прогнозов развития рынка блокчейнтехнологий. [1-3]

Все упомянутые исследовательские компании сходятся во мнении о высоком потенциале технологии для модернизации различных отраслей.

Исследования показывают, что всё чаще компаний начинают внедрять блокчейн на практике. Опрос, проведенный блокчейн-проектом Casper Labs в 2023 году, показывает, 90 % опрошенных компаний из США, Китая и Великобритании сообщили о внедрении блокчейн-технологий на различных этапах своей деятельности, а 87% планируют увеличить инвестиции в эту область. Особенно активно инвестиционные планы проявляются в Китае, где более половины участников опроса собираются вложиться в блокчейн в 2023 году. Данный опрос проводился среди 603 лиц, принимающие бизнес-решения на предприятиях США, Китая и Великобритании. [4]

Согласно PricewaterhouseCoopers, международная сеть компаний, предлагающие услуги в области консалтинга и аудита, технология блокчейна потенциально может увеличить мировой валовой внутренний продукт на 1,76 триллиона долларов США в течение следующего десятилетия. [5]

PWC выделили 5 основных направлений применений блокчейна:

1.Отслеживание происхождения товаров (Provenance) – прирост \$962 млрд. Поскольку блокчейн позволяет прозрачно отслеживать путь товаров от производства до конечного покупателя, это приводит к снижению рисков подделок, фальсификаций и быстрой идентификации загрязнений или нарушений.

Энтони Брюс, партнер и руководитель направления фармацевтики и наук о жизни в РwC UK, говорит, что блокчейн может стать важной отличительной чертой и силой для розничных продавцов. Для них блокчейн позволяет отслеживать происхождение товаров, что способствует развитию доверительных отношений и постоянства покупателей за счёт прозрачности. Блокчейн фиксирует, что продукты действительно соответствует качеству или что цена справедливо установлена. Помимо этого, данная технология помогает быстро определить контрафактные или загрязненные товары. В здравоохранении блокчейн может обеспечить безопасность пациентов, гарантируя подлинность и происхождение медицинских препаратов и товаров. Это может повысить доверие и стимулировать развитие отрасли.

- 2. Платежи и финансовые инструменты прирост \$433 млрд. Блокчейн позволяет проводить быстрые, дешевые и прозрачные расчёты, что способствует развитию цифровых валют центральных банков (CBDC), использованию стейблкоинов для международных переводов и упрощению расчётов между банками.
- 3. Управление идентичностью (Identity Management) прирост \$224 млрд. Блокчейн позволяет надёжно хранить персональные данные и профессиональные сертификаты без риска подделки, обеспечивая экономию времени и денег на верификацию, а также защищая от мошенничества и кражи личных данных.
- 4. Контракты и разрешение споров (Smart Contracts & Dispute Resolution) прирост \$73 млрд. Смарт-контракты автоматизируют исполнение соглашений и оплату, снижая судебные расходы и ускоряя сделки за счёт устранения посредников и автоматического решения споров.
- 5. Вовлечение клиентов (Customer Engagement & Loyalty Programs) прирост \$54 млрд. Блокчейн делает программы лояльности удобнее для пользователей и компаний, обеспечивая рост вовлеченности клиентов через цифровые баллы, подарочные карты и обмен бонусами через смартфоны.[6]

Активное развитие указанных направлений подтверждается также практикой внедрения блокчейн-решений крупнейшими мировыми корпорациями. Согласно данным BlockData, 81 из 100 крупнейших публичных компаний в мире вовлечены в использование технологии блокчейн на различных этапах: от проведения исследований и пилотных проектов до разработки и внедрения полноценных решений (рисунок 2).

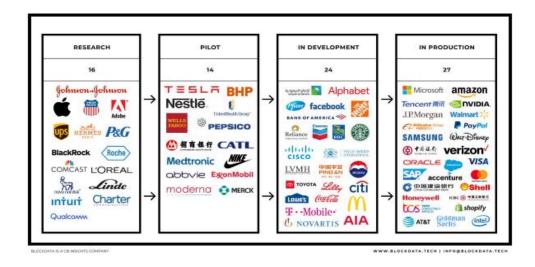


Рисунок 2 - Уровни вовлеченности топ-100 публичных компаний в блокчейн: от исследований до внедрения. [7]

На сегодняшний день 27 компаний уже реализовали функционирующие продукты и сервисы на базе блокчейна, тогда как 65 компаний продолжают разрабатывать собственные решения. Помимо этого, 36 компаний выступили инвесторами в 101 блокчейн-проект, вложив в общей сложности 3,5 миллиарда долларов в рамках 140 инвестиционных раундов. Охват 29 отраслей и реализация 83 уникальных сценариев применения подтверждают растущее стратегическое значение технологии блокчейн и её потенциал для трансформации традиционных бизнес-процессов.

1.3 Hyperledger Fabric как пример корпоративной платформы

Анализ предпочтений ведущих 100 публичных компаний в области распределённых реестров показывает, что наиболее востребованной платформой является Hyperledger Fabric, которую используют 26% компаний (рисунок 3). Следующими по популярности являются Ethereum (18%), Quorum (11%) и Corda (8%). В общей сложности корпоративные пользователи задействуют 30 различных блокчейн решений, что свидетельствует о высокой степени диверсификации технологий в процессе интеграции блокчейна в бизнес-процессы.[7]

Нурегledger Fabric чаще всего выбирается корпоративными пользователями, поскольку он обладает высокой гибкостью и рядом конкурентных преимуществ по сравнению с другими блокчейн-платформами.[8] Fabric позволяет компаниям тонко настраивать архитектуру сети под свои бизнес-задачи, поддерживает создание закрытых каналов для конфиденциального обмена данными, а также обеспечивает возможность реализации сложной бизнес-логики через цепной код (смарт-контракты). В то время как остальные блокчейны из списка

преимущественно ориентированы на сферу финансов, Hyperledger Fabric предлагает универсальные решения для различных отраслей. Эти особенности делают платформу особенно привлекательной для предприятий, где требуется сочетание надежности, масштабируемости и защиты коммерческой тайны.

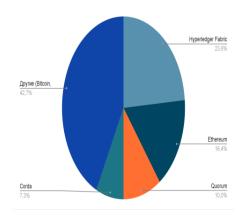


Рисунок 3 - Доля блокчейн платформ, используемые топ 100 компаниями. [7]

Также выбор компаниями именно Hyperledger Fabric может быть связан с тем фактом, что данная платформа за всё время своего существования не подвергалась успешным взломам.[9] Высокий уровень защищенности, открытый код, регулярно проходящий аудит, а также строгая система контроля доступа делают Fabric надежным выбором для корпоративных сетей, где безопасность критически важна

Hyperledger Fabric — это приватный блокчейн, где все участники проходят предварительную идентификацию. Перед началом работы они настраивают закрытые каналы для обмена информацией. Эти каналы создаются администратором сети, но важно понимать — сам администратор не получает автоматического доступа к данным внутри канала. Если участникам потребуется добавить нового члена в канал, это потребует коллективного решения через процедуру голосования.

Безопасность передачи обеспечивается протоколом защиты данных, который выполняет две ключевые функции: шифрует весь трафик между узлами и проверяет подлинность участников коммуникации. Хотя протокол защиты данных не является внутренней частью архитектуры Fabric, его интеграция критически важна для защиты данных.

Сердце системы – цепной код (chaincode), программный модуль, в котором воплощается бизнес-логика через смарт-контракты. По сути, это набор правил, определяющих, какие действия и при каких условиях будут автоматически выполняться в сети. Смарт-контракты покрывают различные бизнес-процессы: от переводов активов и оформления, например сопроводительных документов до

сложных схем управления цепочками поставок и других операций, требующих четкой автоматизации.

Когда производитель хочет отправить товар, его система создает транзакцию, например цифровую накладную. Эта накладная автоматически подписывается и отправляется на проверку другим участникам. Логист, например проверяет, может ли перевезти этот груз - есть ли свободные машины, подходит ли транспорт по габаритам. Каждый ставит свою электронную подпись, если все в порядке.

После этого документ попадает в "центр сборки", где его проверяют последний раз и добавляют в общую базу данных (блокчейн). Теперь все участники и производитель, и логист, и покупатель видят эту информацию в своих системах. Производитель видит, что товар готов к отправке, логист получает задание на перевозку, покупатель знает, когда ждать груз. Все синхронизировано и защищено от изменений. Никто не может задним числом изменить данные о поставке - ни производитель, ни перевозчик. [8]

Таким образом, Hyperledger Fabric представляет собой одну из наиболее гибких и безопасных платформ для корпоративного применения блокчейна, что объясняет её популярность среди ведущих мировых компаний.

1.4. Причины потребности в использовании блокчейна в цепочках поставок

Рост потребности в прозрачности и отслеживаемости всех этапов бизнесопераций становится ключевым фактором повышения доверия между участниками рынка. Блокчейн, вызывающий всё больший интерес у мировых корпораций, отвечает этим требованиям, позволяя минимизировать риски и повысить контроль над движением товаров и услуг.

Дополнительно, усиливающаяся цифровизация бизнеса и рост требований к защите информации выступают катализаторами внедрения блокчейна. Стремление к более эффективному и безопасному обмену данными побуждает компании инвестировать в эту технологию как в средство трансформации бизнеспроцессов, повышения операционной эффективности и снижения издержек.

Цифровизацией принято называть процесс интеграции цифровых технологий в различные сферы деятельности: от образования и здравоохранения до логистики и производства. Цифровизация направлена на оптимизацию бизнеспроцессов, повышение качества и количество оказываемых услуг и прочее.

61% генеральных директоров по всему миру ставят цифровую трансформацию основных бизнес-операций в топ-3 своих приоритетов, согласно исследованию PwC.[6]

Таким образом, рост блокчейн-технологий тесно связан с процессом глобальной цифровизации. Увеличение объёма цифровых данных, расширение

онлайн-взаимодействия между организациями и рост потребности в прозрачности и безопасности цифровых процессов стимулируют внедрение распределенных реестров. Блокчейн перестаёт быть нишевым решением и становится инструментом цифровой трансформации, особенно в отраслях, где критична достоверность и неизменяемость информации.

Рост угроз кибератак и утечек данных побуждает компании искать более безопасные решения. В условиях этих вызовов блокчейн предлагает уникальные возможности для обеспечения безопасности. По данным IBM, средний ущерб от утечки данных в мире в 2024 году составил 4,88 млн долларов: на 10% больше, чем в прошлом году, и самый высокий показатель за всю историю. (рисунок 4) [10-11]

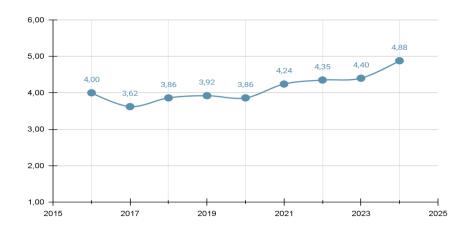


Рисунок 4 - Средний ущерб от утечки данных, млн долларов. [10-11]

Блокчейн предоставляет надежную защиту от несанкционированного доступа, фальсификаций и утечек данных, благодаря своей децентрализованной архитектуре и использованию криптографических алгоритмов. В условиях усиления киберугроз компании видят потенциал в блокчейн-технологиях для минимизации рисков безопасности, повышения уровня доверия между участниками и обеспечения надежной защиты данных, что особенно актуально в эпоху цифровизации и роста угроз кибератак.

В условиях современного бизнеса традиционный документооборот сталкивается с рядом проблем, таких как низкая скорость обработки данных, высокие затраты на хранение и управление документами, а также риск подделки и утраты информации. В ответ на эти вызовы блокчейн становится все более привлекательным решением. С помощью распределённых реестров можно обеспечить неизменяемость данных и автоматизировать процессы благодаря смарт-контрактам, что значительно улучшает эффективность и надежность документооборота.

Несмотря на развитие цифровых технологий, традиционный документооборот в бизнесе продолжает сталкиваться с рядом серьёзных проблем. Сложные многоступенчатые процедуры, необходимость верификации данных на каждом этапе, высокий риск ошибок при передаче информации, а также существенные затраты на хранение и обработку документов замедляют бизнеспроцессы и увеличивают операционные расходы.

Согласно данным PwC, устранение 20 ключевых бюрократических процессов, таких как многоступенчатое согласование документов и избыточная документация, может повысить общую эффективность и результативность организации на 35%. В результате этого руководители смогут делегировать до 70% своей ответственности за принятие решений на более низкие уровни, что даст им возможность сосредоточиться на более важных стратегических задачах, соответствующих их роли.[12]

Несмотря на очевидные преимущества, такие как повышение безопасности и прозрачности, внедрение блокчейн-технологий сталкивается с рядом ограничений, которые важно учитывать. Одним из самых значимых недостатков является высокая стоимость внедрения и эксплуатации, особенно для крупных организаций, что может существенно ограничить привлекательность блокчейна для некоторых бизнесов. Также многие блокчейн-платформы сталкиваются с проблемами масштабируемости, что делает их менее эффективными при обработке больших объёмов транзакций, а также повышает нагрузку на систему.

Кроме того, существует вопрос законности и регулирования, поскольку блокчейн-технологии сталкиваются с трудностями юриспруденции где регулировании, особенно база для работы В странах, правовая развита. децентрализованными системами ещё не Эти вызовы внимательного подхода к внедрению и регулированию блокчейн-систем, что необходимо учитывать при принятии решения о их использовании в бизнеспроцессах.[13]

Таким образом, блокчейн — это активно развивающаяся технология, которая всё чаще применяется в логистике и управлении цепями поставок. Анализ показал, что интерес к ней стабильно растёт как со стороны бизнеса, так и со стороны государства. Причиной этого является необходимость повышения прозрачности, достоверности и скорости обработки данных. Особое внимание заслуживает платформа Hyperledger Fabric, которая ориентирована на корпоративное использование и обладает функционалом, необходимым для логистических процессов: модульностью, возможностью ограничения доступа и высокой безопасностью. Таким образом, блокчейн уже сейчас становится важным инструментом цифровизации логистики, а его внедрение в цепочки поставок — обоснованная и перспективная мера.

2. БЛОКЧЕЙН ТЕХНОЛОГИИ В УПРАВЛЕНИИ ЦЕПОЧКИ ПОСТАВОК

2.1 Общие сведения блокчейн технологии в цепи поставок

Как упоминалось ранее, блокчейн уже применяется в различных сферах — от здравоохранения до финансовых услуг [6]. Одним из перспективных направлений становится логистика, где эта технология способна существенно повысить эффективность управления цепочками поставок. Современные логистические цепи отличаются высокой сложностью и многоуровневостью, что увеличивает риски сбоев, подделок и ошибок на каждом этапе движения продукции.

Прежде всего, блокчейн обеспечивает прозрачность всех этапов поставки. Каждое значимое событие — перемещение товара, его проверка или изменение условий хранения — автоматически фиксируется в системе и становится доступным для всех участников цепи. Это способствует более оперативному принятию решений и укрепляет доверие, поскольку данные невозможно изменить без консенсуса всех сторон. Однако важно понимать, что блокчейн не верифицирует достоверность исходной информации — он лишь обеспечивает её неизменяемость. Поэтому критически важно обеспечить надёжный контроль качества данных на этапе ввода, чтобы избежать распространения ошибочной или недостоверной информации внутри системы.

На практике эти преимущества продемонстрированы в кейсе IBM Food Trust и компании Walmart. В 2016 году вице-президент Walmart по безопасности пищевых продуктов поручил команде отследить источник упаковки нарезанных манго. Несмотря на наличие всех данных в корпоративной системе, задача заняла 6 дней, 18 часов и 26 минут. После внедрения блокчейн-системы на базе Hyperledger Fabric, разработанной в сотрудничестве с IBM, компания смогла сократить время отслеживания той же информации до 2,2 секунды [14].

Вторым важным преимуществом блокчейн-технологий является снижение затрат на документооборот. В традиционной логистике обмен бумажными документами (накладными, коносаментами и др.) требует значительных ресурсов. Цифровизация этих документов с использованием блокчейна обеспечивает их синхронное обновление и доступ в режиме реального времени, минимизируя ошибки, риски фальсификаций и упрощая аудит. При этом блокчейн выступает не как хранилище самих документов, а как защищённый реестр метаданных и операций с ними.

Показателен пример платформы Global Shipping Business Network (GSBN), созданной при участии крупнейших морских перевозчиков. Система поддерживает электронные коносаменты (eBL), информация о которых фиксируется в блокчейне, что гарантирует их подлинность и прозрачность оборота.[15] Благодаря признанию eBL международными организациями и правовыми системами (например, в Великобритании и Сингапуре), платформа

уже в 2023 году обработала 120 000 коносаментов и более миллиона выпусков грузов, что позволило сократить выбросы СО₂ более чем на 20 000 тонн за счёт отказа от бумажных документов и ускорения логистических операций. К 2030 году крупнейшие перевозчики, включая MSC и Hapag-Lloyd, планируют полностью перейти на eBL. [16]

Исследование McKinsey & Company показывает, что цифровизация накладных, составляющих от 10 до 30% затрат на торговую документацию, способна принести более \$15,5 млрд прямой выгоды судоходной экосистеме, а также увеличить глобальный объём торговли до \$40 млрд. [17] Использование блокчейна в этом контексте позволяет достичь автоматической синхронизации документов между сторонами, ускорить процессы и повысить надёжность данных.

Безопасность является еще одной ключевой особенностью блокчейн-систем. Принцип неизменяемости означает, что после внесения в реестр данные не могут быть изменены без согласия всей сети. Это существенно снижает риски фальсификаций, особенно в вопросах отслеживания происхождения продукции. Тем не менее, если изначально были введены ложные сведения, блокчейн лишь зафиксирует их. Таким образом, обеспечение достоверности исходных данных попрежнему лежит на поставщиках и технических системах ввода.

Наконец, блокчейн обеспечивает высокий уровень доверия между участниками цепочки поставок. Данные, записанные в систему, не могут быть изменены, что гарантирует прозрачность всех этапов поставки. Это особенно важно для создания доверительных отношений с конечными потребителями, которые могут быть уверены в подлинности информации о происхождении и состоянии продукта.

Таким образом, внедрение блокчейн-технологий в цепочку поставок повышает эффективность и прозрачность процессов, но и решает важные проблемы, такие как отслеживание товаров, минимизация ошибок и манипуляций, что приводит к созданию более устойчивых и доверительных бизнес-отношений.

Подобный подход может быть адаптирован и для мясной отрасли Казахстана, которая сталкивается с рядом структурных проблем, снижающих её эффективность. Рассмотрим текущее состояние этой отрасли и обоснование необходимости цифровизации на её примере.

2.2 Анализ рынка мяса Казахстана

Рынок мяса представляет собой важный сектор мировой экономики. Продукция животноводства занимает значительную долю в потребительских расходах. При этом отрасль претерпевает существенные изменения под влиянием как внутренних экономических факторов, так и глобальных трендов.

На международной арене рынок мяса отличается высокой конкуренцией между ведущими производителями – Китай, США, Бразилией, и т.д. (рисунок 5). Казахстан обладает значительными пастбищными ресурсами, общая площадь пастбищ в стране составляет около 186,5 млн гектаров, что превышает территорию трёх Франций. Из них 42,2 млн гектаров, это сопоставимо с территорией Узбекистана или Швеции, пригодны для круглогодичного использования. Это позволяет стране иметь огромный потенциал для развития скотоводства. Благодаря значительным природным условиям и территории, Казахстан остается важным игроком в сфере сельского хозяйства, особенно в скотоводстве.[18]

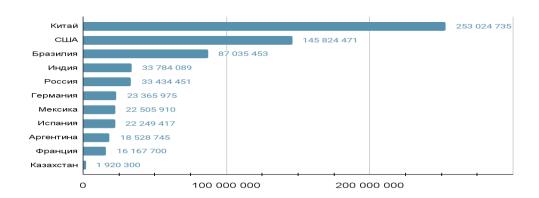


Рисунок 5 - Крупнейшие страны-производителей мяса за 2023 год, в живом весе, тонн. [19]

Несмотря на обширные территории и ресурсы, Казахстан отстает по объемам производства мяса от Узбекистана, и значительно уступает более крупным производителям, что подчеркивает необходимость внедрения современных технологий и цифровых решений для повышения эффективности отрасли. (рисунок 6)

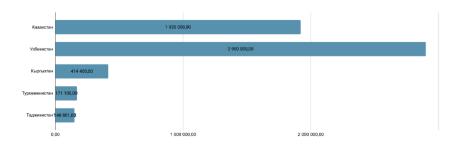


Рисунок 6 - Производства мяса в Центральной Азии по странам, в живом весе, тонн. [20-23]

Хотя в стране имеется собственное животноводство Казахстан ежегодно импортирует десятки тысяч тонн мяса, особенно мяса птицы, что указывает на недостаточное внутреннее производство. Импорт покрывает значительную долю потребления, особенно в городах и в сегменте массового питания. Это свидетельствует о структурном дефиците мяса, а также о необходимости развития промышленного животноводства и птицеводства внутри страны. (рисунок 7) [24]

Рисунок 7 - Импорт и экспорт мяса. [24]

В контексте развития аграрного сектора Казахстана также стоит отметить снижение доли сельского хозяйства в ВВП, что подчеркивает необходимость повышения эффективности в данной отрасли (рисунок 8). [25-26]

Рисунок 8 - Доля сельского хозяйства в ВВП в процентах и долл США. [25-26]

Снижение доли сельского хозяйства в ВВП Казахстана обусловлено сочетанием внутренних проблем отрасли, таких как низкая производительность труда, неэффективность государственной поддержки и экологические вызовы. Для повышения эффективности аграрного сектора необходимо проведение

комплексных реформ, направленных на улучшение инвестиционного климата, развитие предпринимательской активности и модернизацию инфраструктуры.

Кроме того, уровень потребления мяса внутри страны напрямую влияет на спрос и производство в отрасли. Внутреннее потребление мяса является важным индикатором благосостояния населения, а также показывает, насколько развит рынок и какие существуют перспективы для улучшения продовольственной безопасности. В Казахстане, где потребление мяса продолжает расти, особенно в крупных городах, важно обеспечить баланс между производственными мощностями и внутренним спросом. (рисунок 9) [27]

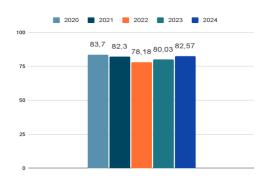


Рисунок 9- Потребление мяса в Республике Казахстан, в среднем на душу населения, кг.[27]

Анализ динамики потребления мяса по регионам Республики Казахстан за 2020-2024 годы показывает относительную стабильность спроса, несмотря на внутренние региональные колебания. Такой тренд свидетельствует сформировавшихся пищевых предпочтениях населения и устойчивом внутреннем рынке, предпосылки долгосрочного планирования создает ДЛЯ цифровизации мясной отрасли.

2.3 Традиционная цепочка поставок мяса.

Для более детального анализа текущих процессов в мясной отрасли Казахстана рассмотрим традиционную цепочку поставок, охватывающую этапы от разведения животных до реализации готовой продукции. В фокусе анализа — наиболее распространённые виды мяса в стране: говядина, баранина, конина и др.

Цепочка поставок включает: поступление корма, разведение животных, транспортировка животных, убой, первичную переработку, упаковку, транспортировку и сбыт (рисунок 10).

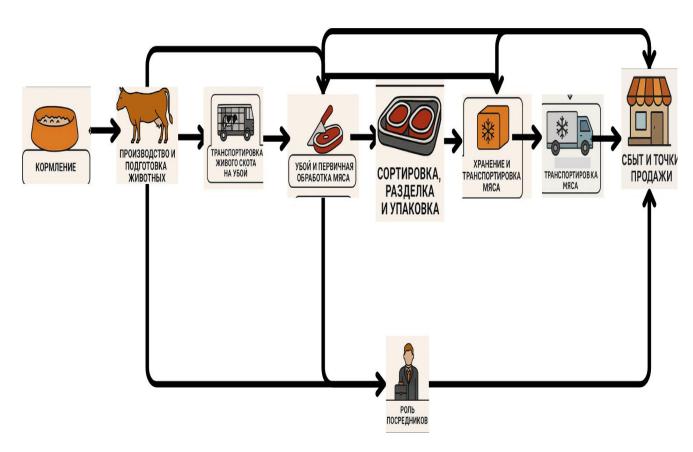


Рисунок 10 - Традиционная цепочка поставок мяса

Основу производственного звена составляют фермерские и крестьянские хозяйства, обеспечивающие животноводческое сырьё.

В контексте общей структуры отрасли следует отметить, что на 1 января 2023 года в Казахстане было зарегистрировано 248 602 крестьянских или фермерских хозяйства, из которых 240 720 действуют. По сравнению с 2021 годом количество активных хозяйств увеличилось на 8,7%. Согласно информации, предоставленной пресс-службой Бюро национальной статистики и опубликованной на ElDala.kz [28], наибольшее количество хозяйств зарегистрировано в Туркестанской области (74 355), за ней идут Алматинская (27 961) и Жамбылская (23 780) области. Действующие фермерские хозяйства составляют 13,2% ОТ обшего числа субъектов малого предпринимательства.

По данным Бюро национальной статистики Республики Казахстан на начало 2025 года, общее поголовье скота и птицы продолжает расти (рисунок 11). [29]

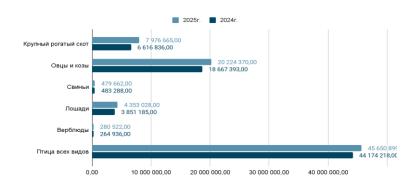


Рисунок 11 - Общее поголовье скота, голов. [29]

На этапе кормления животных в цепочке поставок мяса используется разнообразная кормовая база. Среди основных видов кормов преобладают силос, сенаж и концентрированные смеси — именно они занимают наибольшую долю в общем объёме заготовленных кормов. Кроме них, применяются сено, солома, зерновые и зернобобовые культуры, а также зелёные и корнеплодные корма. Эти компоненты формируют основу рациона крупного рогатого скота и варьируются в зависимости от региона, времени года и типа содержания

По данным на 1 января 2025 года, в сельскохозяйственных предприятиях Республики Казахстан имелось следующее количество кормов по видам. (рисунок 12) [30]

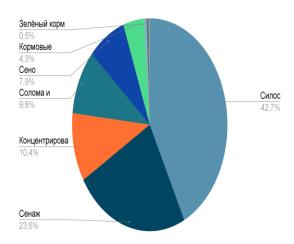


Рисунок 12 — Наличие кормов в сельхозпредприятиях по видам по состоянию на 1 января 2025 года.[30]

1. Производство. С момента рождения животному присваивается уникальный идентификационный номер, который вносится в ветеринарный паспорт. Для КРС используют биркование, бирку препят на правое ухо, однако бирки с радиочастотной меткой допускается крепить на левое ухо.

Навесные бирки для крупного и мелкого рогатого скота, свиней и верблюдов обладают следующими характеристиками: конструкция бирки не причиняет вреда животному и исключает возможность повторного использования благодаря специальным элементам, разрушающимся при попытке снятия; изготовлены из полимерного материала, устойчивого к внешним воздействиям; бирки имеют желтый цвет, нестираемые надписи и легко считываются на протяжении всего срока эксплуатации животного.

На лицевой стороне бирки наносится индивидуальный номер животного, на тыльной — порядковый номер. Также на бирку наносится штрих-код из четырнадцати символов, в котором закодированы цифровые коды Республики Казахстан, региона, вида животного и уникальный порядковый номер согласно приложению к действующим Правилам идентификации. Кроме того, на бирках указывается торговая марка производителя и дата изготовления.

Размеры бирок и тавров соответствуют нормативным требованиям и зависят от возраста животного: для взрослых особей высота не превышает 8 см, ширина не более 5 см, для молодняка — соответственно не более 5 см и 3 см. [31]

В ветеринарном паспорте фиксируются данные о породе, возрасте, кормлении, условиях содержания и ветеринарных мероприятиях. Этот паспорт сопровождает животное убоя, обеспечивая необходимую ДО момента цифровизации прослеживаемость. Впрочем, процесс прослеживаемости животных в Казахстане находится на стадии активного развития, и в настоящее время в системе существуют как бумажные, так и электронные ветеринарные паспорта, что даёт возможность отслеживать всю информацию о животном, но ещё не обеспечивает полной интеграции всех этапов цепочки поставок.

2. Транспортировка скота на убой. Организация транспортировки крупного рогатого скота (КРС) в Республике Казахстан регулируется ветеринарными и санитарными требованиями, установленными Правилами осуществления транспортировки перемещаемых объектов (Приказ и.о. Министра сельского хозяйства Республики Казахстан от 29 мая 2015 года № 7-1/496) [32]. Эти нормы направлены на обеспечение благополучия животных, предупреждение распространения заболеваний и защиту здоровья населения.

Перед транспортировкой КРС проводится обязательный ветеринарный осмотр животных. Государственный ветеринарно-санитарный инспектор проверяет состояние поголовья. По итогам осмотра оформляется ветеринарный сопроводительный документ, без которого перевозка запрещена. При наличии признаков заболеваний транспортировка животных не допускается.

Для перевозки используется специализированный транспорт, предназначенный для перевозки животных. Конструкция транспортного средства должна обеспечивать безопасность, исключать травматизм и стресс у животных. Автотранспорт должен иметь деревянный пол, покрытый слоем подстилки, высота ботов 2 метра для КРС, 1,5 для овец, коз. Привязывают животных головой вперед. Допускается перевозка молодняка без привязи, при условии, что все животные могут свободно стоять или лежать. Транспортное средство подлежит обязательной дезинфекции.

В процессе перевозки необходимо соблюдать требования по кормлению и поению: животным предоставляется корм и вода с установленной периодичностью. Перевозка сопровождается проводником, обеспечивающим уход за животными в пути. Также запрещается загрязнение окружающей среды во время транспортировки.

Контроль транспортировке, погрузке, разгрузке, выгрузке осуществляется государственными ветеринарно-санитарными инспекторами, на территории которых происходит погрузка, разгрузка, а также по той территории, по которой проходит маршрут. В контроль входит: наличие ветеринарных документов; состояние транспортного наличие подтверждающие дезинфекцию транспортного документов, средства; соблюдение ветеринарных требований; соответствие наименования, веса, количества и маркировки перемещаемого объекта данным, указанным в ветеринарных документах. Проводится также выборочный осмотр: наличие или отсутствие температуры, измерение пульса и дыхания. После этого ставит отметку о разрешении погрузки, выгрузки в ветеринарном документе

Таким образом, транспортировка КРС в Казахстане подчиняется ряду обязательных ветеринарно-санитарных норм, направленных на минимизацию стресса у животных и снижение риска распространения заболеваний.

Для транспортировки животных необходимо наличие документов, указанных в таблице 1.

Таблица 1 — Перечень документов, необходимых для транспортировки крупного рогатого скота (КРС) в Республике Казахстан [33]

No	Название документа / действия	Назначение и особенности	Кто оформляет / сообщает	Срок
1	Уведомление о ввозе животных	Владельцы обязаны сообщить о поступлении животных из других областей. Невыполнение влечёт штраф: 5 МРП (13890 тг.), повторно в течение года –30 МРП (83340 тг.)	Владелец уведомляет государственное коммунальное предприятие или отдел ветеринарии акимата.	В течение 3 рабочих дней
2	Ветеринарная справка на группу животных	Подтверждает законность и безопасность ввоза животных. Указывается цель (убой/реализация), численность, номера бирок. Выдаётся на каждую партию.	Государственный ветеринарный врач по месту отправки	До 1 рабочего дня
3	Ветеринарный паспорт	Содержит данные владельца, идентификацию (бирка), описание животных (пол, возраст, цвет), вакцинации и обработки. Обязателен при транспортировке.	Владелец получает при регистрации животного через ветслужбу	При регистраци и / обновлении
4	Акт на транспортное средство	Подтверждает пригодность транспорта для перевозки животных. Содержит техпаспорт, сведения о водителе и ТС.	Составляется перевозчиком и утверждается ветслужбой	Перед транспорти ровкой
5	Акт дезинфекции транспортного средства	Подтверждает о прохождении дезифекции	Выдаётся специализированно й организацией, имеющей лицензию на проведение дезинфекционных работ.	Непосредст венно перед загрузкой.
6	Товарно- транспортная накладная (ТТН)	Подтверждает легальность перевозки. Указываются данные грузоотправителя, грузополучателя, перевозчика, описание груза (количество голов КРС, общий вес)	Оформляется грузоотправителем, подписывается перевозчиком	Перед началом перевозки
7	Путевой лист	Содержит информацию о маршруте, водителе и транспортном средстве. Необходим для контроля со стороны транспортной инспекции	Оформляется перевозчиком	Перед началом рейса

- 3. Убой и первичная обработка. Правила убоя сельскохозяйственных животных в Республике Казахстан установлены Приказом Министра сельского хозяйства Республики Казахстан от 27 апреля 2015 года № 7-1/370 «Об утверждении Правил организации проведения убоя сельскохозяйственных животных, предназначенных для последующей реализации» (зарегистрирован в Министерстве юстиции Республики Казахстан 8 июля 2015 года № 11591).[34] После того как животное прибывает на бойню, оно проходит обязательный ветеринарный осмотр, затем начинается процесс убоя. Ветеринарный осмотр, помимо внешнего и термометрии включается в себя проверку документов животного, такие как: наличие сопроводительного документа, индивидуального номера и ветеринарного паспорта животного. Данный процесс важен ведь эти документы фиксируют здоровье животного. Сам убой животных, происходит vбойных пунктах мясоперерабатывающих или предприятиях, ветеринарно-санитарным требованиям, соответствующих утвержденным приказом МСХ РК № 7-1/832 от 18.09.2015, а также в соответствии с ветеринарными правилами, утвержденными приказом № 7-1/587 от 29.06.2015. После убоя туши и ее органов проводится ветеринарно-санитарная экспертиза для выявления заболеваний или патологий. Далее проводится лабораторный осмотр, включающий микробиологические, химические и токсикологические анализы для проверки безопасности мяса. В процессе также проверяются сопроводительные документы животного, включая ветеринарную справку, индивидуальный номер и ветеринарный паспорт. Только после подтверждения соответствия всем требованиям мясо допускается к реализации. Запрещено проводить убой животных в местах, которые не отвечают установленным требованиям. Каждый убойный пункт, мясоперерабатывающее предприятие, убойная площадка имеет свой учетный номер. После прохождения всех необходимых осмотров и экспертиз туше присваивается ветеринарная справка, подтверждает соответствие которая ee ветеринарным требованиям. Она подтверждает соответствие продукции ветеринарным и санитарным требованиям. В справке указывается информация о животном, результаты ветеринарно-санитарной экспертизы туши и органов, а также дата и номер акта экспертизы. Документ также фиксирует сведения о благополучии региона. Эта справка является обязательным документом для дальнейшего перемещения и реализации продукции.
- 4. Сортировка, разделка и упаковка. Сортировка мяса осуществляется непосредственно на убойном пункте, после прохождения ветеринарно-санитарного осмотра и этапа охлаждения. В зависимости от степени охлаждения мясо классифицируют следующим образом: замороженное мясо (не выше -8 °C), охлажденное мясо (от 0 °C до плюс 4 °C), парное мясо (после убоя, не ниже плюс 35 °C), размороженное мясо (отеплённое до температуры не ниже -1,5 °C). Все упаковочные материалы, которые контактируют с мясом или продуктами убоя, должны быть безопасны и не изменять свойства продукта ни вкус, ни запах, ни цвет, ни состав. Маркировка упаковки, содержащая указания на отличительные признаки

продукции, такие как «халяль», «мраморное мясо» и другие, должна быть достоверной и соответствовать установленным требованиям технических регламентов Таможенного союза. Указанная информация не должна вводить потребителя в заблуждение и должна подтверждаться документально. Говядина может упаковываться под вакуумом, в условиях модифицированной газовой потребительскую или транспортную также в использованием термоусадочной плёнки, лотков, полиэтиленовых пакетов или контейнеров. Вся продукция должна сопровождаться содержащими сведения о происхождении, условиях хранения, сроках годности предусмотренных характеристиках, нормативными актами государств-членов Таможенного союза. [35]

5. Хранение и транспортировка мяса. После упаковки мясо отправляется на хранение. Хранение мяса должно обеспечивать его безопасность, сохранение качества и соответствие санитарным требованиям на всех этапах логистической цепи. Изготовители, продавцы и уполномоченные представители иностранных производителей обязаны организовывать хранение продукции так, чтобы она соответствовала действующим требованиям Таможенного союза, включая положения ТР ТС 021/2011 «О безопасности пищевой продукции».

Парное и охлажденное мясо в тушах, полутушах и четвертинках должно храниться в вертикальном подвешенном состоянии, при этом необходимо исключить соприкосновение между тушами. В холодильных камерах мясо размещается на стеллажах или поддонах, при этом расстояние от пола должно составлять не менее 8–10 см, а от стен и охладительных установок — не менее 30 см. Между рядами продукции должны оставаться проходы для свободного доступа к ней.

Холодильные камеры должны быть оборудованы термометрами или средствами автоматического контроля температуры, а также устройствами для записи температурных показателей. В процессе хранения мясо группируют по видам, назначению (например, реализация или переработка), а также по термическому состоянию – охлаждённое или замороженное.

Допустимое повышение температуры воздуха в камере в момент загрузки или выгрузки мяса не должно превышать 5 °C. В течение остального времени колебания температуры воздуха при хранении, перевозке и реализации не должны превышать 2 °C. До момента загрузки в транспортное средство или контейнер мясо не допускается оставлять в неохлаждаемых помещениях, поскольку это нарушает температурный режим и может привести к снижению качества продукции.

Перевозка туш, полутуш и четвертин осуществляется в вертикальном подвешенном состоянии, исключающем их соприкосновение. Допускается перевозка замороженного мяса в штабелированном виде, при условии предотвращения загрязнения поверхности. Использование транспортных средств и контейнеров, ранее применявшихся для перевозки живых животных, не допускается. Все транспортные единицы, предназначенные для перевозки мяса, должны быть оснащены оборудованием, обеспечивающим соблюдение и

регистрацию установленного температурного режима. Температурный режим при транспортировке мясной продукции имеет критическое значение для обеспечения её безопасности и сохранения качества. В зависимости от состояния мяса (охлаждённое, мороженое и т.д.) установлены нормативные пределы температур при погрузке и последующей перевозке. Согласно требованиям санитарных правил И ветеринарных норм, параметры температурного режима следующие: мороженое мясо (в виде туш, полутуш или четвертин) должно иметь температуру не выше -8 -12 °C при погрузке; мороженые мясные блоки – не выше -8 °C; охлаждённое мясо должно находиться в пределах от 0 до +4 °C; остывшее мясо – в пределах от +4 до +12 °C.

Соблюдение указанных температурных параметров при перевозке необходимо для предотвращения порчи продукции и распространения патогенных микроорганизмов. Нарушение температурного режима может привести к ухудшению органолептических свойств мяса, а также к административной ответственности со стороны контролирующих органов.

Кроме того, запрещается перевозка мяса навалом без упаковки, за исключением кости, предназначенной для производства желатина. По завершении транспортировки транспортные средства и контейнеры подлежат обязательной санитарной обработке. В процессе хранения, перевозки и реализации не допускается размораживание замороженного мяса. Также на предприятиях розничной и оптовой торговли запрещается повторное упаковывание под вакуумом или в модифицированной атмосфере мяса, если оно уже поступило в такой упаковке.

Мясо принимается к перевозке только при наличии ветеринарных выданных органами ветеринарно-санитарного соответствии с законодательством Республики Казахстан, обязательным ветеринарный сопроводительный документом является документ, оформляемый через Единую автоматизированную систему учёта в области ветеринарии, используемую Министерством сельского хозяйства РК. Данные о перевозке регистрируются в ЕАСУ ВЕТ для обеспечения прослеживаемости. Кроме того, перевозка мясной продукции возможна только при наличии санитарного паспорта транспортного средства, выдаваемого уполномоченными санитарно-эпидемиологического контроля после дезинфекции, а также акта дезинфекции, подтверждающего обработку перед поддерживать загрузкой. Транспорт должен температурный (охлажденное мясо — 0-4°C, замороженное — не выше -18°C). Оформляется товарно-транспортная накладная, подтверждающая факт отгрузки, маршрут и участников перевозки, а также путевой лист для контроля маршрута и данных водителя. Для межрегиональных или экспортных перевозок требуется ветеринарный сертификат формы № 2, выданный органами ветеринарносанитарного надзора. В случае карантинных ограничений оформляется разрешение на транспортировку, выдаваемое ветеринарными органами. При необходимости, например, для экспорта, розничной торговли или по

требованию контрагентов, предоставляется сертификат соответствия или качества продукции, выданный аккредитованными органами сертификации. В случае перевозки упакованного мяса требуется наличие маркировки и сопроводительной документации от производителя, содержащей информацию о происхождении продукции, условиях хранения и сроках годности. [35]

- 6. Сбыт и точки продажи. Когда мясо готово к реализации, оно поступает в торговую сеть, включая супермаркеты, рынки, мясные лавки, рестораны и другие заведения. На каждой точке продаж должна быть доступна информация о происхождении мяса, его качестве и условиях хранения, чтобы обеспечить покупателям полную информацию о продукте.
- 7. Информационный поток. Каждый этап цепочки поставок сопровождается информационным потоком, который включает данные о животных, их происхождении, ветеринарных осмотрах, сертификатах качества и упаковке продукции. Информация фиксируется и передается между участниками цепочки, что позволяет отслеживать каждый этап, обеспечивать контроль качества и соблюдение всех нормативов, а также минимизировать риски фальсификации или нарушения стандартов.
- 8. Роль посредников. Посредники в цепочке поставок мяса в Казахстане это оптовики, логистические компании и другие участники, которые занимаются покупкой и перераспределением мяса между производителями (фермами, мясокомбинатами) и потребителями (рынки, супермаркеты).

2.4 Факторы, подрывающие безопасность мясной продукции

Несмотря на детально отлаженную структуру, традиционная цепочка поставок мяса в Казахстане сталкивается с рядом существенных проблем, которые снижают её эффективность и прозрачность.

Несмотря на наличие паспортов животных и ветеринарных сертификатов, информация часто ведется на бумаге, что создает риск подделок, потери или фальсификации данных. Покупателю практически невозможно проверить, откуда именно поступило мясо и в каких условиях оно было произведено и транспортировано.

Значимость данного аспекта обусловлена тем, что казахстанцы употребляют в среднем 82,6 кг мяса в год. Высокое потребление мяса увеличивает риски, связанные с пищевыми инфекциями. В 2023 году в Казахстане зарегистрировано 248 602 фермерских хозяйств, из которых 240 720 действуют, что подчеркивает важность эффективного контроля на всех этапах производства и поставок. По данным Всемирной организации здравоохранения (ВОЗ) [36], ежегодно около 600 миллионов человек в мире заболевают из-за загрязненной пищи, а 420 000 умирают. Дети в возрасте до 5 лет несут на себе 40% бремени болезней пищевого происхождения, ежегодно от них умирает 125 000 человек.

Высокое потребление мяса в Казахстане увеличивает риски возникновения заболеваний, таких как кишечные инфекции, вызванные плохими условиями транспортировки или хранения мяса. Улучшение контроля и повышение прозрачности цепочек поставок имеют ключевое значение для обеспечения безопасности продукции и защиты здоровья потребителей.

Продолжая анализ недостатков цепочки поставок мяса в Казахстане, стоит выделить конкретные системные проблемы, выявленные в результате прокурорской проверки Жамбылской территориальной инспекции ветеринарного контроля.

Во-первых, уже на этапе производства и сертификации обнаружены многочисленные случаи выдачи ветеринарных сертификатов с нарушением законодательства. В 2023 году инспекторами Меркенского и Жамбылского районов были выданы, как минимум, четыре сертификата на экспорт крупного и мелкого рогатого скота, вопреки установленным санитарным требованиям. Так, 9 февраля 2023 года КХ «АКА и К» был выдан сертификат на перевозку убойного крупного рогатого скота на 45 голов скота, вакцинированного от лептоспироза — заболевания, при котором экспорт строго запрещён. Аналогичные случаи касались овец, вакцинированных от оспы, и спортивных лошадей, не привитых от гриппа. Это свидетельствует не только о нарушении регламентов Евразийского экономического союза, но и о потенциальной угрозе распространения опасных болезней.

Во-вторых, информационные и цифровые системы учёта не выполняют свою функцию должным образом. Например, в 85 случаях в 2023 году были выданы сертификаты без загрузки подтверждающих документов об оплате в систему «e-Agriculture», а также без соблюдения сроков регистрации заявок, что подрывает достоверность и правовую силу этих документов. Кроме того, несоответствие данных между поданными заявлениями и внесённой в систему информацией (например, поставка мяса в РФ, тогда как справка – в Шымкент) указывает на низкий уровень внутренней верификации.

На этапе ветеринарного контроля и досмотра при транспортировке выявлены проблемы с материально-техническим обеспечением. На постах, предназначенных для лабораторного контроля, отсутствовало необходимое оборудование отсутствуют холодильники, термоконтейнеры, осветители для микроскопа, анализаторы «Лактан» и даже базовые весы и термометры. Несмотря на то, что в 2018 году в регион поступили три мобильных лаборатории с 48 единицами оборудования на общую сумму 3,29 млн тенге, они на протяжении 5 лет так и не были использованы, а средства измерения даже не прошли метрологическую поверку, что делает невозможным их законное применение.

На границе и при импорте контроль за перемещаемой продукцией также формален. Через только один пункт пропуска «Карасу» за 2023 год незарегистрированно ввезено более 2700 тонн мяса птицы на сумму свыше 900 млн тенге. Инспекторы на ВКП "Карасу" не отразили эти поставки в учётных журналах и не зафиксировали в информационной системе. Так, при

сопоставлении данных Инспекции, зафиксировавшей прохождение 1640 автотранспортных средств (АТС) через ВКП «Карасу», с информацией Департамента государственных доходов по Жамбылской области, указавшего на 1764 АТС за аналогичный период, выявлено расхождение. Разница между данными ДГД, осуществляющей учет и контроль перемещаемых товаров, и Инспекции (ветеринарный контроль), отвечающей за проверку безопасности продукции, свидетельствует о том, что 124 машины с продукцией прошли через пункт пропуска без надлежащего ветеринарного контроля.

Несмотря на установленный запрет на ввоз продукции от отдельных производителей, например китайской компании Henan Huaying Agriculture Development Co. LTD (разрешение на ввоз которой действует лишь с августа 2023 года), зафиксированы случаи пересечения государственной границы продукции данной компании ранее — в июле того же года.

Нарушения при перевозке и хранении мясной продукции создают условия для развития бактерий и вирусов. На фоне отсутствия отбора проб и лабораторной проверки в случае обнаружения подозрительных признаков (например, изменения цвета или запаха), перевозимое мясо фактически не проверяется на пригодность к употреблению.

Наконец, на этапе реализации, как указано в отчёте, мясо без необходимых ветеринарных анализов свободно продаётся на рынках Алматы, Тараза, Шымкента и Туркестанской области, а также поставляется в детские сады и государственные учреждения. Такое положение дел создаёт реальную угрозу здоровью населения, особенно детей, которые наиболее уязвимы к инфекциям.

Таким образом, цепочка поставок мяса в Казахстане страдает от недостаточной цифровизации, коррупционных рисков, формального подхода к контролю и отсутствия ответственности, что в совокупности ставит под угрозу продовольственную безопасность страны. [см. Приложение A]

Подводя итоги, во втором разделе работы проведён комплексный анализ блокчейн-технологий применения В управлении цепочкой поставок. Установлено, что блокчейн способен кардинально изменить подход к логистике, обеспечивая полную прозрачность, надёжность и прослеживаемость всех этапов движения продукции –от фермы до потребителя. Особое внимание уделено текущему состоянию мясного рынка Казахстана, выявлены его структурные слабости: недостаточной цифровизации ОТ случаев фальсификации ветеринарных документов и низкой эффективности контроля хранении. Традиционная транспортировке И цепочка характеризуется сложностью, многозвённостью и высокой уязвимостью к ошибкам и коррупционным рискам, что негативно влияет на безопасность продукции и доверие потребителей.

Проанализированы проблемы, подрывающие безопасность мясной продукции, включая несоблюдение санитарных норм, недостаточный контроль на границе и неэффективное использование цифровых систем. Это подчёркивает необходимость внедрения инновационных решений, таких как

блокчейн, которые могут обеспечить автоматизацию процессов, снижение административной нагрузки и повышение доверия к продукции на внутреннем и внешнем рынках.

Таким образом, раздел обосновывает целесообразность применения блокчейн-технологии как инструмента повышения эффективности, безопасности и устойчивости цепочки поставок в агропромышленном секторе Казахстана.

3. ИСПОЛЬЗОВАНИЕ БЛОКЧЕЙН ТЕХНОЛОГИИ В УПРАВЛЕНИИ ЦЕПОЧКИ ПОСТАВОК

3.1 Анализ зарубежной практики

Одним из примеров внедрения блокчейн-технологий в агропромышленную цепочку поставок является исследовательский проект, реализованный в Австралии под эгидой Australian Meat Processor Corporation (AMPC).[37] Исследование, завершенное в 2019 году в сотрудничестве с Griffith University, было направлено на исследование возможностей применения блокчейна для обеспечения полной цифровой прослеживаемости мясной продукции – от фермы до потребителя.

Проблема, на решение которой направлен проект, заключается в недостаточной прозрачности и надежности существующих систем контроля и прослеживаемости мясной продукции. Это ведёт к частым ошибкам и подделкам маркировки, когда продукцию ошибочно представляют как произведённую в странах с высокой репутацией качества, например, в Австралии, что в итоге подрывает доверие потребителей и снижает уровень безопасности пищевой продукции. В исследовании отмечается, что по данным организации Meat and Livestock Australia (MLA), лишь 50% брендированной австралийской говядины, реализуемой на китайском рынке, на самом деле поступила из Австралии. Подобные репутационные риски, могут значительно снизить экспортный потенциал, например, как в Бразилии в 2017 году. Отчёт сосредоточен на внедрении системы отслеживания мясной продукции, с акцентом на операции перерабатывающих предприятий, ключевые для прослеживаемости. Экспорт живых животных не рассматривается.

Техническая реализация проекта включала переустройство разделочного цеха с целью обеспечения полной прослеживаемости продукции по модели «один-к-одному». Основной задачей данного этапа стало предотвращение смешивания отрубов от разных животных, что особенно критично при переходе к индивидуальной прослеживаемости.

Для обеспечения прослеживаемости продукции была предложена система логистического контроля на основе RFID-меток. На этапе разделки половин туш на четверти каждая четверть помещается либо в отдельный лоток с RFID-меткой, либо подвешивается на крюк с индивидуальной RFID-меткой. Далее, при переработке четвертей в более мелкие части, все куски, полученные из одной четверти, размещаются в один маркированный лоток, который в информационной системе связан с лотком или крюком, содержащим соответствующую четверть туши. Эта связь может быть установлена автоматически с использованием RFID-технологии, без необходимости ручного вмешательства операторов. Все лотки с мелкими кусками затем могут быть помещены на конвейер для дальнейшей обработки.

На заключительном этапе контейнеры с первичными отрубами снимаются с конвейера и направляются на участки паровой очистки и

вакуумной упаковки. Перед этим система считывает информацию с RFID-меток на контейнерах и передаёт её либо на следующую линию сортировки, либо сразу в систему, которая отвечает за маркировку упаковки. После упаковки каждый отруб либо получает свою индивидуальную метку, либо информация о нём фиксируется на этикетке групповой коробки. Это зависит от выбранной схемы маркировки –индивидуальной или групповой. Упакованные отрубы помещаются в коробки для хранения и дальнейшей отправки. Благодаря тому, производственного процесса соблюдалась всех этапах прослеживаемость, в одной коробке могут находиться отрубы от разных животных, при этом система точно знает, от какого животного каждый кусок. Это позволяет сохранить полную прозрачность происхождения продукции даже после упаковки.

Расчёты проводились исходя из объёма переработки 150 000 голов в год и среднего веса туши 180 кг. В качестве технологии маркировки первичных отрубов рассматривались привычные штрихкоды, соответствующие текущей практике на предприятиях. Результаты анализа показали, что внедрение системы индивидуальной прослеживаемости приведёт к дополнительным затратам. Так, в первый год суммарные расходы составят около 322 тысяч долларов, а в последующие годы – около 10 тысяч долларов ежегодно. В расчёте на килограмм продукции это соответствует дополнительным расходам в размере примерно 1,2 цента в первый год и около 0,04 цента в последующие годы. Во втором варианте анализа ROI рассматривалось использование RFIDметок не только для отслеживания целых туш, но и для маркировки всех первичных отрубов. Было принято, что на одного животного потребуется 60 RFID-меток по цене 0,10 доллара каждая, что даёт переменные затраты на уровне 6 долларов на голову. Ожидаемые выгоды включали повышение цены реализации продукции на 0,05 доллара за килограмм, что отражает готовность потребителей платить больше за продукт с полной прослеживаемостью, а также экономию на трудозатратах в размере 60 000 долларов в год за счёт автоматизации сортировки и упаковки.

Система прослеживаемости организовывалась аналогично анализу и включала те же фиксированные затраты на оборудование и обеспечение. Несмотря программное на значительные первоначальные вложения, уже в первый год после внедрения система демонстрирует положительный поток –примерно 0,7 цента денежный на килограмм продукции, который увеличивается до 1,85 цента в последующие годы. Фиксированные затраты проекта указаны в таблице 2.

Таблица 2 – Фиксированные затраты проекта АМРС. [37]

Постоянные затраты	Год 1	Год 2	Год 3	Год 4	Год 5
Интеграция системы	\$300,000				

Продолжение таблицы 2

Постоянные затраты	Год 1	Год 2	Год 3	Год 4	Год 5
Обслуживание системы	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
Считыватель/записываю щее устройство для передачи данных со штрих-кодов	\$2,385				
Метки, прикрепляемые к лоткам	\$402				
Считыватели/записываю щие устройства на рабочих станциях	\$14,307				
Метки для лотков на рабочих станциях	\$177				
Считыватель для передачи данных с меток в систему	\$2,385				
Метки на конвейере перед вакуумным отпаривателем	\$177				
Считыватель для передачи данных на штрих-коды	\$2,385				
Итого постоянные затраты	\$322,217	\$10,000	\$10,000	\$10,000	\$10,000

Анализ чувствительности показал, что для покрытия затрат на внедрение без учёта экономии на персонале требуется повышение цены на уровне 3,6 цента за килограмм. При отсутствии повышения цены необходима экономия на зарплатах около 1 миллиона долларов в год. Общая чистая приведённая стоимость инвестиций (NPV) составила около 1,77 млн долларов, коэффициент выгоды затратам (BCR) -1,43,что соответствует рентабельности инвестиций 43%. Основная часть выгод связана с ростом цены реализации, в то время как экономия труда играет меньшую роль.

Проведённый анализ чувствительности показал, что чистый приток на килограмм продукции имеет почти линейную зависимость от уровня переменных затрат на RFID-маркировку. В первый год положительный ROI

сохраняется при стоимости RFID-метки до \$7,5 на голову; при превышении этой величины проект становится убыточным. Однако уже со второго года, за счёт отсутствия капитальных вложений, рентабельность повышается на \sim 1,1 цента/кг. Согласно экспертным оценкам, реалистичная стоимость RFID составляет \$6–8, что позволяет рассчитывать на окупаемость проекта уже в первый год при росте отпускной цены на 0,05 \$/кг и годовой экономии на трудозатратах в \$60 000. Дополнительный анализ подтвердил, что при увеличении мощности переработки система прослеживаемости становится экономически целесообразной, тогда как для небольших предприятий высокая стоимость RFID остаётся ключевым ограничением. Выгоды проекта указаны в таблице 3.

Таблица 3 – Выгоды проекта АМРС. [37]

Выгоды	Год 1	Год 2	Год 3	Год 4	Год 5
Общая ожидаемая прибыль от повышения цен	\$1,350,000	\$1,350,000	\$1,350,000	\$1,350,00 0	\$1,350,000
Общая ожидаемая экономия на трудозатрат ах	\$60,000	\$60,000	\$60,000	\$60,000	\$60,000
Итого выгод	\$1,410,000	\$1,410,000	\$1,410,000	\$1,410,00 0	\$1,410,000

По мнению исследовательской группы, реализация индивидуальной прослеживаемости на основе блокчейн не должна ложиться исключительно на мясоперерабатывающие предприятия. Учитывая, цепочка поставок включает множество участников – от фермеров до розничных продавцов, они предлагают рассматривать координированный, отраслевой подход. Такой подход, по их мнению, позволит равномерно распределить расходы, согласовать единые стандарты и обеспечить синхронизированное внедрение технологии на всех этапах цепочки поставок. Авторы выделяют два возможных подхода к финансированию. Первый подход – это возврат инвестиций с последующим распределением выгод – вложенные средства компенсируются участникам, после чего оставшаяся прибыль распределяется согласно согласованной стратегии. Второй подход совместное инвестирование

с пропорциональным распределением выгод, все участники вносят вклад в проект, а будущие выгоды делятся в зависимости от уровня участия.

Опыт проекта также подчёркивает, что эффективность подобных систем во многом зависит от масштаба производства и координации между всеми участниками цепочки поставок. Для малых и средних предприятий высокая стоимость технологий остаётся серьёзным ограничением. Таким образом, результаты этого исследования могут быть полезны как основа для оценки целесообразности внедрения подобных решений в других странах или регионах, но требуют адаптации к конкретным условиям.

3.2 Предложение по внедрению блокчейн-системы в управление мясной цепи поставок

Анализ выявленных недостатков традиционной цепочки поставок мяса в Казахстане, выявленные во втором разделе, таких как фальсификация ветеринарных сертификатов, слабая цифровизация, неэффективный контроль транспортировке импорте, отсутствие прозрачности также демонстрирует необходимость происхождения продукции, острую комплексной модернизации всей системы. Одним из ключевых решений, способных устранить эти системные сбои, является внедрение блокчейнтехнологии.

Предлагаемая модель внедрения блокчейн-системы в управление цепочкой поставок мяса представляет собой концептуальное решение, ориентированное на повышение прозрачности, безопасности и управляемости Она логистических процессов. основывается на распределённого реестра, в котором фиксируются все ключевые события жизненного цикла продукции -от момента происхождения животного до поступления мяса в розничную сеть. Объем предлагаемой модели 100 000 голов в гол

Особое внимание в рамках модели уделяется обеспечению достоверности информации, что достигается за счёт автоматической регистрации событий с RFID-технологий использованием также И датчиков, возможности ручного вмешательства в критически важные параметры. В необходимости изменения данных система фиксирует корректировки с указанием причины, времени и участника, инициировавшего изменение, что позволяет сохранить полный хронологический контекст и обеспечить аудит всех операций.

Важным элементом модели является принцип совместной ответственности всех участников цепочки поставок — от производителей и логистических компаний до контролирующих органов и торговых сетей. Такой подход позволяет сформировать единую цифровую среду доверия, где каждый участник получает актуальные и проверенные данные, что способствует сокращению операционных рисков, повышению эффективности

взаимодействия между звеньями цепи и улучшению качества конечной продукции.

Таким образом, модель внедрения блокчейн-системы представляет собой не только технологическое, но и организационное решение, направленное на глубокую трансформацию всей логистической инфраструктуры в агропромышленном секторе, особенно в условиях, где ранее наблюдались низкий уровень цифровизации и высокий риск фальсификаций.

При этом важно понимать, что не все этапы традиционной цепочки поставок требуют равного уровня цифрового контроля. Например, теоретически блокчейн-технология может быть адаптирована и для этапа кормления скота — с целью отслеживания происхождения кормов, их состава или поставщика. Однако в условиях Казахстана, особенно в регионах с круглогодичным выпасом, где основным источником питания остаются природные пастбища, подобная цифровизация представляется избыточной и малопрактичной.

С учётом условий аграрного сектора в Казахстане, в данной работе внимание сосредоточено на тех этапах цепочки поставок, где особенно важно обеспечить прослеживаемость — это ветеринарный контроль, транспортировка, переработка. В таблице 4 сопоставлены этапы цепочки поставок с необходимыми данными для прослеживаемости.

Таблица 4 — Сопоставление этапов цепочки поставок с необходимыми данными для прослеживаемости

Звено цепочки	Ключевые данные для прозрачности	Цель сбора данных
Ветеринарный контроль	Уникальный ID животного, дата вакцинации, заключения о здоровье, ветпаспорт	Подтверждение безопасности продукции
Транспортировка	Даты отгрузки и прибытия, маршруты, температурные режимы, номер транспортного средства	Обеспечение условий перевозки и контроль логистики
Переработка	Дата забоя, место переработки, номер партии, соблюдение санитарных норм	-

Для каждого из указанных звеньев важно обеспечить не только сбор, но и защиту данных от изменений, а также возможность их оперативной проверки всеми участниками цепочки. Блокчейн позволяет реализовать эти задачи за счёт

неизменяемости записей, распределённого хранения и автоматического обновления данных в режиме реального времени.

На этапе ветеринарного контроля ключевым приоритетом становится обеспечение безопасности продукции животноводства путём отслеживания состояния здоровья животных. В предлагаемой модели каждая единица скота получает уникальный идентификатор в виде RFID-метки, которая закрепляется за животным с момента его регистрации. Поскольку идентификатор уникален, должна быть интегрирована с существующей базой индивидуальных номеров, чтобы исключить дублирование. Генерируемый уникальный идентификатор (метка) для сельскохозяйственных животных должен формироваться с учётом закреплённых литерных и цифровых кодов Республики Казахстан, областей. Соответствие этим кодам обеспечивает однозначную идентификацию региона и вида животного в рамках общей системы учета.[31] С помощью этой метки фиксируются все важные вакцинации, ТИП препаратов, ветеринарные данные: дата заключения ветеринарного врача, результаты осмотров и эпизоотический статус региона.

На рисунке 13 представлен интерфейс этапа «Производства».

1. Производство / Фермер

Производство ID (животного)
Ферма происхождения
Вакцинации
Препараты
Диагнозы
And the second s
Осмотры
Создать запись

Рисунок 13- Интерфейс этапа производства

На рисунке 14 представлен пример размещения RFID метки на корове.[38]

Рисунок 14 - RFID-метки на животном [38]

Информация поступает в единую цифровую систему, где каждое обновление записывается в блокчейн-реестр. Это гарантирует, что данные не могут быть изменены задним числом или удалены без следа. Такое решение позволяет не только предотвратить фальсификацию документов, но и оперативно реагировать на возможные эпидемиологические риски.

Предполагаемая стоимость RFID-метки должна быть минимальной с целью снижения годовых переменных затрат, поскольку в соответствии с действующими Правилами идентификации сельскохозяйственных животных повторное использование RFID-меток после убоя не допускается. Это обусловлено необходимостью исключения подделки данных и обеспечения прослеживаемости происхождения продукции. Исходя из ассортимента, представленного в официальном реестре ICAR, стоимость одной RFID-метки начинается от 0,3 доллара США в зависимости от производителя, типа устройства, а также технических характеристик. В таблице 5 представлены затраты на RFID инфраструктуру на этапе производства.

Таблица 5 – Затраты на RFID инфраструктуру

Статья затрат	Количество	Цена за единицу (USD)	Общая сумма (USD)
RFID-метки (wuxi fofia, код ISO 991010)	100 000 штук	0.4	40 000
RFID-считыватели с антеннами	20 штук	500	10 000
Установка и интеграция	_	_	10 000

Продолжение таблицы 5

Прочее (Настройка, обучение)	_	_	10 000
Итого		_	70 000

Внедрение блокчейн-технологии на этапе транспортировки животных на убой способствует более точному учёту и прозрачности логистических операций. Каждое животное сканируется при отгрузке и приёмке. Информация о времени, количестве, месте отправления и получателе фиксируется в системе и может храниться в распределённом реестре.

Кроме данных о перемещении, в блокчейн возможно внести цифровые версии сопроводительных документов — ветеринарных справок, паспортов животных, санитарных паспортов транспорта и накладных. Это позволяет отслеживать не только физическое движение животных, но и наличие необходимых разрешений и подтверждений состояния здоровья.

На рисунке 15 представлен интерфейс этапа "транспортировки скота".

ID животного / партии	
Время	Маршрут
Отправитель / Получатель	Количество
Ветсправки	Паспорта
Документы	Выбрать файлы Файл не выбран

Рисунок 15 - Интерфейс этапа "транспортировки скота"

Такой подход обеспечивает участникам цепочки поставок — фермерам, транспортным компаниям, мясокомбинатам и государственным органам — доступ к актуальной и неизменяемой информации. Это способствует упрощению проверок, снижению риска ошибок и недобросовестных действий в процессе транспортировки.

На следующем пред убойном этапе будет внедрён этап съёма физиологических данных с помощью ІоТ-датчиков. С момента помещения животного в приемочный загон до передачи на линию убоя предполагается проведение предварительного осмотра. В течение 15–20 минут на каждую голову скота будет производиться сбор параметров (температура, частота

сердцебиения, активность и другие), после чего данные автоматически сохраняются в блокчейн-систему. Датчики будут использоваться повторно после дезинфекции.

На рисунке 16 представлен интерфейс этапа "предубойной проверки".

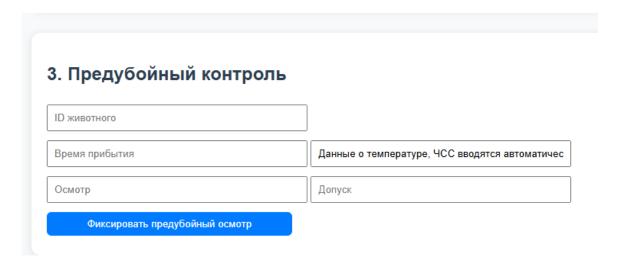


Рисунок 16 - Интерфейс предубойной проверки

С учётом суточной нагрузки в 274 головы достаточно поддерживать в обороте около 30 IoT-датчиков, обеспечивая непрерывный осмотр животных на протяжении смены. В таблице 6 представлены затраты на пред убойный этап.

Таблица 6 – Затраты на пред убойный этап

Статья расходов	Кол-во	Стоимость за ед., \$	Общая сумма, \$
ІоТ-датчики	30	120	3,600
Зарядные станции и ПО для сбора данных	3	500	1,500
Дезинфекционные устройства	2	800	1,600
Подключение и интеграция в блокчейн	-	-	5,000
Установка	-	-	1,300
Итого			13,000

В предлагаемой модели этап маркировки продукции будет реализован по аналогии с австралийским проектом Australian Meat Processor Corporation, где ключевым элементом стала индивидуальная маркировка первичных отрубов

мяса с использованием RFID. На этапе разделки каждую четверть туши фиксируют с помощью метки, а затем все полученные из неё мелкие куски связываются с этой меткой, что обеспечивает полную прослеживаемость и исключает возможность смешивания продукции.

Данная технология позволяет автоматически фиксировать информацию без необходимости ручного ввода, что значительно снижает риск ошибок и ускоряет процесс обработки. Все данные интегрируются в распределённый реестр (блокчейн), что повышает надёжность хранения информации, предотвращает её подделку и облегчает контроль на всех этапах цепочки поставок.

Исходя из опыта австралийского проекта, в этой работе для оценки затрат на внедрение системы прослеживаемости на этапе убоя и разделки принимаются показатели, приведенные в таблице 2, а также дополнительно учитываются затраты на адаптацию системы к условиям Казахстана.

На этапе отгрузки партия продукции сканируется, и в блокчейн автоматически заносятся следующие данные: дата и время отгрузки; номер транспортного средства и данные водителя; маршрут следования; перечень и объём груза; температура в камере на момент погрузки.

На рисунке 17 представлен интерфейс этапа "Транспортировки мяса".

ID партии мяса		
Дата и время отгрузки	Данные транспорта	
Водитель	Маршрут	
Состав и объём груза	Документы	

Рисунок 17 - Интерфейс транспортировки мяса

Предполагается, что все эти данные будут доступный для проверки в реальном времени всеми участниками цепочки: от логистических операторов и ветеринарных служб до представителей торговых сетей и контролирующих органов. Особое значение приобретает оцифровка и фиксация ключевых сопроводительных документов. В систему вносятся: товарно-транспортная накладная; ветеринарная справка; сертификаты соответствия; санитарный паспорт транспортного средства; температурный журнал. Температурный журнал формируется автоматически на основе непрерывных показаний

датчиков и может быть экспортирован для представления в контролирующие органы.

Оцифровка сопровождается наложением электронной цифровой подписи ответственных лиц, а каждая модификация записей фиксируется с указанием даты, причины и участника, инициировавшего изменение. Это исключает возможность несанкционированного редактирования информации и обеспечивает высокий уровень доверия к данным.

Для контроля условий перевозки на рефрижераторных установках внедряются IoT-датчики, подключённые к блокчейн-платформе через модем. Эти датчики в режиме реального времени передают информацию о температуре и влажности в камере, а также фиксируют открытие дверей вне зоны разгрузки. В случае отклонений система автоматически создаёт событие в реестре, уведомляя участников об инциденте. Такая интеграция обеспечивает сохранность цепи и позволяет оперативно выявить лицо, ответственное за возможные нарушения.

Для обеспечения цифрового мониторинга условий транспортировки мяса на каждом этапе логистической цепи предполагается оснащение одного рефрижераторного транспортного средства специализированным комплектом IoT-оборудования с интеграцией в блокчейн-систему. С учётом скрытых расходов (услуги настройки, первичная техподдержка, запасные элементы), средняя стоимость модернизации одного ТС составляет порядка 1500 долларов США. В таблице 7 указаны расходы экспедиторской компании на транспортное средство.

Таблица 7 — Расходы экспедиторской компании на 1 транспортное средство

Статья затрат	Кол-во на 1 ТС	Стоимость за единицу, \$	Общая сумма, \$
IoT-датчики температуры и влажности	2	120	240
GPS-трекер с блокчейн-интеграцией	1	180	180
LTE/4G-модем с ІоТ-шлюзом	1	100	100
RFID-считыватель	1	500	500
Программное обеспечение и интеграция	_	_	250
Установка, наладка и техподдержка			230
Итого (на 1 транспортное средство)	_		1 500

Особое внимание уделяется прозрачности и информированию потребителя. Каждая единица продукции будет снабжена уникальным QR-кодом, который формируется на финальном этапе упаковки. Этот код связан с цифровым идентификатором товара в блокчейне и даёт возможность получить доступ ко всей истории продукта: от происхождения животного до момента его поступления в магазин. Генерация QR-кода осуществляется автоматически через специализированный модуль системы, который создаёт ссылку на веб-интерфейс, извлекающий данные из блокчейна по уникальному ID.

Таким образом, при сканировании QR-кода покупатель сможет убедиться в подлинности, происхождении и качестве мяса, что повышает доверие к продукции и стимулирует осознанное потребление. Для торговых сетей и контролирующих органов это решение упрощает процессы отслеживания и проверки, а также позволяет оперативно выявлять возможные нарушения или несоответствия.

Хотя технология блокчейн имеет сложную внутреннюю структуру, для конечного потребителя она полностью абстрагирована. Пользователь взаимодействует с интуитивным интерфейсом и не нуждается в технических знаниях, поскольку доверие обеспечивается архитектурой самой системы

На рисунке 18 изображена информация, которую покупатель получает.

Рисунок 18 - Информация полученная из системы

На рисунке 19 представлена модель цепочки поставок с использованием технологии блокчейн.

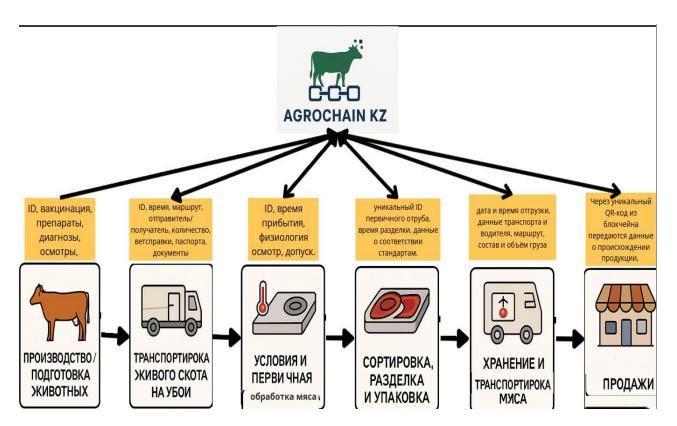


Рисунок 19 - Цепочка поставок с применением блокчейн технологии

3.3 Экономическое обоснование проекта

Реализация предлагаемой модели внедрения блокчейн-системы в цепочку поставок мяса требует предварительной оценки затрат, связанных с цифровизацией логистических процессов, приобретением оборудования и разработкой программного обеспечения. В таблице 8 указаны общие затраты на внедрение блокчейн технологии.

Постоянные затраты	Год 1	Год 2	Год 3	Год 4	Год 5
Интеграция системы	\$330,000				
Обслуживание системы	\$15,000	\$15,000	\$15,000	\$15,000	\$15,000
Инфраструктура на убойном цеху	\$50,000	\$5,000	\$5,000	\$5,000	\$5,000
Инфраструктура на предубойном этапе	\$13,000	\$2,000	\$2,000	\$2,000	\$2,000
Инфраструктура на производственном этапе	\$70,000	\$40,000	\$40,000	\$40,000	\$40,000
Итого постоянные	\$478,000	\$62,000	\$62,000	\$62,000	\$62,000

Таблица 8 – Общие затраты на внедрения блокчейн технологии

Себестоимость говядины согласно Eldala [39], средняя себестоимость производства говядины составляет около 2500 тенге за килограмм. Как сообщает Informburo со ссылкой на 'Атамекен', в Астане оптовая цена говядины составляет 3200–3300 тенге за килограмм.[40] Основываясь на этих данных, можно рассчитать экономическую целесообразность реализации мяса на внутреннем и внешнем рынках.Средний вес одной головы КРС 340[29].

затраты

Дополнительные расходы, связанные с интеграцией блокчейн-технологии в логистику (включая обслуживание, инфраструктуру и упаковку с QR-кодами), увеличивают себестоимость продукции на ~50 тенге за килограмм. Таким образом, обновлённая себестоимость составляет 2550 тг. В таблице 9 приведен расчет ключевых показателей эффективности. В таблице 10 проведен анализ чувствительности к изменению объема производства. Для оценки ключевых показателей эффективности были использованы формулы ROI и NPV. (1–2)

$$ROI = \frac{(P-I)}{I} * 100 \tag{1}$$

где: P — прибыль от реализации продукции; I — затраты на инвестиции.

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+r)_t} - IC$$
(2)

где: CFt – денежный поток в период t;

r – ставка дисконтирования;

n – количество периодов;

ІС – первоначальные инвестиции.

Таблица 9 – Расчет ключевых показателей эффективности проекта

Показатель	Расчёт
Прибыль	3200-2550=650 тг
Объем мяса	340*55%*100 000=18700 тон
Прибыль от реализации продукции	18 700 000*700= 12,115 млрд тенге
Затраты на блокчейн	478,000*511=244,26 млн тг
ROI (Рентабельность инвестиций)	(12,115 млрд - 244,26 млн)/244,26 млн=4858%
NPV (чистая приведенная стоимость на 5 лет)	NPV= (12,115/1,165^1) +(12,115/1,165^2)++(12,115/1,165^5)-0,244=38,97млрд
ТБУ	244,26 млн/ 650*340*55%=2010 голов

Таблица 10 – Анализ чувствительности проекта к изменению объёма производства

Кол-во голов	Объём мяса (т)	Годовая прибыль (млрд тг)	ROI (%)	NPV (млрд тг)
15,000	2,805	1.823	647%	6,5
30,000	5,610	3.65	1394%	13,3
50,000	9,350	6.08	2390%	22,3
80,000	14,960	9.72	3878%	36

Проведенный анализ показывает, что мясная отрасль в Казахстане является высокорентабельной даже без внедрения цифровых технологий. При базовой себестоимости ~2500 тг/кг и оптовой цене реализации 3200 тг/кг, маржинальность продукции остаётся высокой.

Дополнительные расходы, связанные с внедрением блокчейн-системы (включая обслуживание, инфраструктуру и упаковку с QR-кодами), увеличивают себестоимость всего на ~50 тг/кг. Тем не менее, даже с учётом этих затрат, проект сохраняет значительную прибыльность. Расчёты показывают, что при объёме производства всего от 2020 голов в год проект уже становится самоокупаемым, а при производстве 100 000 голов достигается чистая приведённая стоимость (NPV) 39 млрд тенге.

Повышение цены сделало бы проект ещё более прибыльным, однако оно не учитывалось в расчётах, так как и при минимальной цене показатели демонстрируют высокую экономическую эффективность. Это подчёркивает устойчивость модели даже в условиях ценового давления.

Таким образом, интеграция блокчейн-технологии в логистическую цепочку мясной продукции не только не снижает рентабельность бизнеса, но и создаёт дополнительные стратегические преимущества, упомянутые ранее.

Это делает внедрение блокчейна оправданным и перспективным направлением цифровой трансформации в агропромышленном секторе Казахстана.

3.4 Интересы участников цепи

Внедрение блокчейн-технологий в логистику цепочки поставок мясной продукции предполагает участие всех звеньев — от производителей до государственных регуляторов. Успешная реализация такой модели невозможна без наличия устойчивой экономической и организационной мотивации у всех участников. Особенно значимую роль в этом процессе играют фермеры, являющиеся отправной точкой всей логистической системы.

Блокчейн позволяет фермерам предоставить покупателям и регулирующим органам достоверную информацию о происхождении продукции, что способствует росту доверия и формированию справедливой цены.

Дополнительно, наличие цифрового «паспорта» на продукцию, а также подтвержденной сертификации (например, органической или халяль), даёт возможность выходить на новые рынки, включая премиальные сегменты. Это позволяет производителям работать напрямую с торговыми сетями и экспортёрами, минуя посредников, что значительно увеличивает рентабельность хозяйств.

Блокчейн также укрепляет доверие со стороны потребителей и государственных органов. Благодаря свойству неизменности данных любые

попытки изменить информацию о происхождении или качестве продукции фиксируются, исключая возможность скрытых правок или фальсификаций.

Ещё одним важным преимуществом является упрощённый доступ к финансовым инструментам. Подтверждённая цифровая история хозяйственной деятельности и соблюдение стандартов качества служат основанием для получения кредитов, субсидий и страховых выплат.

Тем не менее, участие в системе требует от фермеров определённых затрат и ответственности. Необходимо наличие оборудования (например, RFID-меток и техники для ввода данных), подключения к интернету и навыков работы с цифровыми платформами. Кроме того, фермеры несут ответственность за точность вводимой информации, поскольку достоверность данных является основой доверия ко всей системе.

Для мясоперерабатывающих предприятий прозрачность происхождения сырья имеет ключевое значение. Гарантированная аутентичность продукции позволяет соответствовать стандартам качества и безопасности, снижать репутационные риски и укреплять доверие к бренду. Блокчейн обеспечивает неизменяемую фиксацию данных о каждой партии мяса и её происхождении, что исключает возможность подделки информации, включая сертификаты происхождения.

Блокчейн позволяет сохранять достоверные данные о фермах, условиях содержания и обработке животных, что обеспечивает переработчикам быстрый доступ к информации и возможность оперативной проверки соответствия партий установленным требованиям. При выявлении нарушений система позволяет быстро отследить и изъять небезопасную продукцию. В случае проблем безопасностью продукции блокчейн выявления позволяет идентифицировать немедленно И отозвать подозрительные партии, минимизируя риски для потребителей.

Общий цифровой реестр с информацией о поголовье и запланированных объёмах поставок помогает прогнозировать загрузку производственных мощностей. При внесении партии в систему фиксируются вес, количество и сроки, что упрощает логистику и повышает точность планирования.

Однако интеграция блокчейн-систем требует вложений: необходимы оборудование и программные решения для автоматического ввода данных. Возможны также издержки в виде комиссий за верификацию транзакций. Переработчики несут ответственность за проверку достоверности поступающей информации и актуальность цифровых журналов.

Внедрение блокчейн-технологий в логистику мяса обеспечивает значительное повышение прозрачности и управляемости всех процессов. За счёт децентрализованного и неизменяемого реестра все участники от перевозчиков и экспедиторов до торговых сетей, получают доступ в реальном времени к ключевым данным о партии продукции: её текущем местоположении, ветеринарных сертификатах, температурных показателях и других сопровождающих документах. Это устраняет необходимость в многократной проверке бумажных документов и снижает риски ошибок.

За счёт единого цифрового пространства можно заранее планировать загрузку транспорта и отгрузки, так как вся информация о движении товаров обновляется автоматически и синхронизируется между всеми участниками. Автоматизация документооборота через смарт-контракты позволяет быстро формировать накладные и сертификаты, подписывать их электронной подписью и исключить вмешательство третьих лиц. Это особенно важно в условиях строгого температурного контроля, который отслеживается в режиме реального времени через IoT-датчики, подключённые к блокчейн-платформе.

Финансовые преимущества достигаются благодаря снижению затрат на бумажный документооборот, уменьшению времени простоя на границе, исключению потерь из-за порчи продукции и снижению количества штрафов за неточности в документах. Таким образом, блокчейн позволяет не только повысить прозрачность, но и оптимизировать расходы и минимизировать риски в логистике мясной продукции.

Данный проект предполагает совместное инвестирование с пропорциональным распределением выгод — все участники вносят вклад в проект, а будущие выгоды делятся в зависимости от уровня участия.

3.5 SWOT-анализ внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане

Для комплексного понимания потенциала внедрения блокчейнтехнологий в логистику мясной продукции необходимо проанализировать не только ожидаемые преимущества, но и возможные ограничения и риски. В этой связи целесообразно провести SWOT-анализ, который позволит структурировано оценить сильные и слабые стороны проекта, а также внешние возможности и угрозы, способные повлиять на его реализацию. В таблице 11 приведен SWOT-анализ внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане.

Таблица 11 – SWOT-анализ внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане

Фактор	Ключевые моменты
Сильные стороны	Надёжность и защита данных. Автоматизация с помощью смарт-контрактов. Снижение издержек и упрощение логистики. Прозрачность и рост доверия на внешних рынках

Продолжение таблицы 11

Фактор	Ключевые моменты		
Слабые стороны	Высокая стоимость внедрения Недостаток технических специалистов Сопротивление со стороны участников Ограничения в цифровой инфраструктуре Правовая неопределённость		
Возможности	Развитие экспортного потенциала. Создание цифровой экосистемы для сельского хозяйства. Повышение конкурентоспособности продукции. Автоматизация и снижение затрат. Привлечение инвестиций и господдержки.		
Угрозы	Низкий уровень цифровой грамотности среди участников. Сопротивление прозрачности и раскрытию данных. Риск недостоверных входных данных. Недостаток доверия со стороны потребителей и зарубежных партнёров.		

Сильные стороны внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане:

- 1. Надёжность и защита данных. Блокчейн обеспечивает высокий уровень надёжности и безопасности благодаря распределённой структуре и криптографической защите. Это исключает возможность подделки информации и повышает доверие между участниками цепочки поставок.
- 2. Автоматизация с помощью смарт-контрактов. Смарт-контракты позволяют автоматически выполнять расчёты и верификацию при наступлении заданных условий. Это снижает риски ошибок, ускоряет процессы и избавляет от необходимости в посредниках.
- 3. Снижение издержек и упрощение логистики. Исключение посредников и цифровизация документооборота сокращают транзакционные издержки и ускоряют логистические процессы, включая таможенные процедуры.
- 4. Прозрачность и рост доверия на внешних рынках. Блокчейн фиксирует каждый этап поставки, что упрощает сертификацию и соответствие международным стандартам. Это усиливает позиции казахстанских поставщиков на экспортных рынках.

Слабые стороны внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане.

- 1. Высокая стоимость внедрения. Разработка и реализация блокчейн-системы требуют значительных финансовых вложений, особенно на старте.
- 2. Недостаток технических специалистов. В стране ощущается нехватка кадров, обладающих необходимыми компетенциями в области блокчейнтехнологий, что осложняет внедрение и поддержку системы.

- 3. Сопротивление со стороны участников. Некоторые участники цепочки могут быть не готовы к цифровизации из-за недостатка доверия, знаний или страха потерять контроль над данными.
- Ограничения В цифровой инфраструктуре. Большинство сельскохозяйственных предприятий в Казахстане пока не используют Это решения. современные цифровые приводит К неэффективному использованию земель, снижению производительности труда и уменьшению конкурентоспособности фермерских хозяйств в регионах. [41]
- 5. Правовая неопределённость. Несмотря на наличие в Казахстане правовых основ для электронного документооборота (ЭСФ, ЭЦП, ЭСНТ), на отсутствует комплексное нормативное блокчейн-систем использования В логистике. В частности, зафиксированные в частных блокчейн-реестрах, не имеют официального статуса юридически значимых доказательств, а смарт-контракты не признаются как самостоятельные правовые документы. Это затрудняет интеграцию блокчейн-решений официальные бизнес-процессы снижает юридическую силу при взаимодействии с государственными структурами.

Возможности от внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане.

- 1. Развитие экспортного потенциала. Прозрачность и достоверность данных, обеспечиваемые блокчейн-технологией, позволяют повысить доверие иностранных партнёров и упростить сертификацию продукции по международным стандартам. Это открывает перспективы расширения экспорта казахстанской говядины на зарубежные рынки, особенно в страны с высокими требованиями к происхождению и качеству продукции (например, ЕС, Китай, страны Персидского залива).
- 2. Создание цифровой экосистемы для сельского хозяйства. Внедрение блокчейна может стать основой для цифровизации всего аграрного сектора. Технология позволит объединить в единую систему фермеров, логистические компании, переработчиков, контролирующие органы и покупателей, что повысит эффективность и прозрачность взаимодействия на всех этапах пепочки.
- 3. Повышение конкурентоспособности продукции. Использование технологии прослеживаемости позволяет производителям доказать качество и экологичность своей продукции. Это создаёт дополнительную ценность в глазах потребителей и партнёров, особенно в сегменте премиум и органик.
- 4. Автоматизация и снижение затрат. Смарт-контракты дают возможность автоматизировать ключевые операции (оплаты, проверки, контроль температурных условий и др.), что снижает административные издержки и ускоряет логистические процессы. Это особенно актуально для мелких и средних хозяйств, которым важно минимизировать операционные расходы.

5. Привлечение инвестиций и господдержки. Успешное внедрение блокчейн-проектов может привлечь внимание как международных инвесторов, так и государственных институтов поддержки агропромышленного комплекса.

Угрозы от внедрения блокчейн-системы для отслеживания цепочки поставок говядины в Казахстане.

- 1. Сопротивление прозрачности и раскрытию данных. Некоторые участники цепочки могут не захотеть делиться полной информацией о своих операциях, опасаясь контроля или конкуренции, что снижает эффективность блокчейн-системы.
- 2. Риск недостоверных входных данных. На этапе сбора информации (о весе, качестве, происхождении мяса) возможна фальсификация или ошибка блокчейн зафиксирует ложные данные как подлинные.
- 3. Недостаток доверия со стороны потребителей и зарубежных партнёров. В случае технических сбоев, скандалов или утечки данных доверие к системе может быть подорвано, особенно на экспортных рынках.

Таким образом, внедрение блокчейн-технологий в цепочку поставок мясной продукции в Казахстане представляет собой стратегически значимое направление, способное модернизировать логистические процессы и повысить их прозрачность. Анализ текущих условий указывает на наличие как значительного потенциала для повышения эффективности и конкурентоспособности отрасли, так и ряда системных барьеров, включая нормативно-правовые пробелы, кадровый дефицит и инфраструктурные ограничения.

Проведённый SWOT-анализ позволяет утверждать, что реализация требует комплексного сочетающего инициатив подхода, технологические решения с институциональной поддержкой. Это предполагает участие государственных органов В формировании соответствующего законодательства, цифровую инфраструктуру, инвестиции также просвещение и обучение участников рынка.

При соблюдении данных условий блокчейн может стать основой для цифровой трансформации агропромышленного комплекса Казахстана, обеспечивая высокие стандарты прослеживаемости, повышения доверия и интеграции в глобальные цепочки поставок.

Таким образом, в третьем разделе рассмотрены практические аспекты внедрения блокчейн-технологий в управление цепочкой поставок мясной продукции. Исследование зарубежного опыта, в частности проекта Australian Meat Processor Corporation, демонстрирует экономическую целесообразность цифровой прослеживаемости продукции с использованием блокчейна. Было установлено, что несмотря на первоначальные инвестиции, внедрение технологии окупается за счёт повышения цены на продукцию, снижения трудозатрат и укрепления доверия потребителей.

На основе анализа текущих проблем мясной отрасли Казахстана предложена модель внедрения блокчейн-системы, адаптированная под казахстанские реалии. Она предполагает создание единой цифровой

платформы, фиксирующей все ключевые события в цепочке поставок — от ветеринарного контроля до розничной реализации. Применение RFID-меток, автоматизация сбора данных и исключение возможности несанкционированного изменения информации позволяет значительно повысить уровень прозрачности и прослеживаемости продукции.

Проработана структура данных для каждого этапа логистической цепи, определены источники и цели сбора информации, а также рассмотрены вопросы совместной ответственности участников рынка. Такая система способна минимизировать коррупционные и административные риски, повысить экспортный потенциал казахстанского мяса и обеспечить соблюдение международных стандартов пищевой безопасности.

Таким образом, внедрение блокчейн-технологий в мясной промышленности Казахстана не только возможно, но и экономически обосновано, при условии координации действий всех участников рынка и поддержки со стороны государства.

ЗАКЛЮЧЕНИЕ

В условиях стремительной цифровизации мировой экономики и растущих требований к безопасности и прозрачности логистических процессов, внедрение инновационных технологий становится неотъемлемой частью устойчивого развития отраслей, включая агропромышленный сектор. Одной из таких перспективных технологий является блокчейн, который обеспечивает неизменяемость данных, высокую степень защищённости информации и возможность полной прослеживаемости продукции.

В данной работе было проведено комплексное исследование потенциала применения блокчейн-технологии в управлении цепочкой поставок на примере мясной отрасли Казахстана. Анализ теоретических основ показал, что блокчейн способен устранить ключевые недостатки традиционных логистических схем — такие как фальсификация документов, отсутствие прозрачности.

Во втором разделе подробно рассмотрена традиционная цепочка поставок мяса в Республике Казахстан. Были выявлены критические узкие места — недостаточная цифровизация, низкая достоверность ветеринарных документов, нарушения санитарных норм, а также высокая зависимость от бумажного документооборота. Эти факторы существенно снижают уровень продовольственной безопасности и доверие со стороны потребителей, особенно на внешних рынках.

В третьем разделе предложена концептуальная модель блокчейн-системы в цепочку поставок мяса, основанная на принципах прозрачности, автоматизации распределённой ответственности И участников логистики. Учитывая опыт международных проектов и специфику казахстанского рынка, данная модель адаптирована под реальные условия функционирования отрасли и ориентирована на достижение устойчивых операционных рисков, результатов: снижение повышение экспортного качества продукции и потенциала, улучшение формирование цифровой доверительной среды.

Таким образом, блокчейн-технологии представляют собой не просто инструмент для улучшения логистики, а стратегический ресурс для трансформации агропромышленного комплекса Казахстана. Их внедрение требует скоординированных усилий государства, бизнеса и экспертного сообщества, а также модернизации нормативно-правовой базы. Однако уже на текущем этапе ясно, что блокчейн способен стать основой новой парадигмы в управлении поставками — более прозрачной, эффективной и безопасной.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1 Исследование Market and markets (2023) https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
- 2 Исследование Precendence Research (2024) https://www.precedenceresearch.com/blockchain-technology-market
- 3 Отчет Fortune Business Insights (2024) https://medium.com/%40guiretfuide59 3/decoding-the-distributed-ledger-a-deep-dive-into-the-blockchain-industry-ceacdf0ad664
- 4 Опрос Casper Labs (2023) https://proveai.com/news/casper-labs-unveils-2023-enterprise-blockchain-report
- 5 Прогноз PricewaterhouseCoopers (2023) https://www.pwc.com/m1/en/media-centre/articles/the-triad-that-secures-blockchain.html
- 6 Отчет PricewaterhouseCoopers (2020) https://www.pwc.com.cy/en/issues/assets/blockchain-time-for-trust.pdf
- 7 Отчет Block Data (2021) https://cognizium.io/uploads/resources/Blockdata%20 20Blockchain%20adoption%20by%20the%20wrolds%20top%20100%20public%20c ompaniese%20-%20na.pdf
- 8 Блокчейн-платформа для предприятия Hyperledger Fabric https://hyperledger-fabric.readthedocs.io/en/latest/
- 9 Безопасность блокчейн-платформы Hyperledger Fabri (2024) https://lf-hyperledger.atlassian.net/wiki/spaces/SEC/pages/20283630/Security+Code+Audits
- 10 Средний ущерб от утечки данных по данным IBM за последний год (2024) https://www.ibm.com/reports/data-breach
- 11 Средний ущерб от утечки данных по данным IBM за период (2022) https://www.bluefin.com/bluefin-news/top-takeaways-ibm-2022-cost-data-breach-report
- 12 Статья PricewaterhouseCoopers об "Индекс измерения бюрократии способствует прозрачности и росту бизнеса" (2017) https://www.strategyand.pwc.com/m1/en/press-eleases/2017/bureaucracy.html
- 13 Статья Ritam Ghandi "Why Blockchain Isn't Always The Right Choice" (2019) https://www.robotmascot.co.uk/blog/why-blockchain-isnt-always-right-choice/
- 14 Статья Archana Sristy "Blockchain in the food supply chain What does the future look like?" (2021) https://tech.walmart.com/content/walmart-global-tech/en_us/blog/post/blockchain-in-the-food-supply-chain.html
- 15 Статья Ledger Insights "GSBN quantifies massive CO2 emission savings from electronic bills of lading" (2024) https://www.ledgerinsights.com/co2-emission-savings-from-electronic-bills-of-lading/
- 16 Публикация MSC "2023" https://www.msc.com/en/newsroom/news/2023/february/msc-commits-to-achieve-100-percent-electronic-bill-of-lading-adoption-by-2030

- 17 Исследование McKinsey&Company (2022) https://www.mckinsey.com/industries/logistics/our-insights/the-multi-billion-dollar-paper-jam-unlocking-trade-by-digitalizing-documentation
- 18 Пастбищные ресурсы Республики Казахстан http://kazniizhik-pastures.kz/Home/About
- 19 Данные о крупнейших стран-производителей мяса (2023) https://www.standard.kz/ru/post/2025_02_10-krupneisix-stran-proizvoditelei-miasa-v-mire-350
- 20 Объемы производства мяса Узбекистана (2024) https://kun.uz/ru/news/2025/05/21/kakiye-faktory-vliyayut-na-rost-tsen-na-myaso-v-uzbekistane
- 21 Объемы производства мяса Кыргызстана (2024) https://knews.kg/2024/12/23/na-1-dekabrya-2024-goda-po-kyrgyzstanu-proizvedeno-414-4-tys-tonn-myasa-v-zhivom-vese/
- 22 Объемы производства мяса в Туркменистане (2024) https://www.stat.gov.t m/ru/news/21
- 23 Объемы производства мяса в Таджикистане (2024) https://www.stat.tj/en/cattle-industry-significantly-developing
- 24 Данные об импорте и экспорте мяса https://trendeconomy.ru/data/h2?commodity=02&reporter=Kazakhstan&trade_flow=Export,Import&partner=World&indicator=TV,YoY&time_period=2015,2016,2017,2018,2019,2020,2021,2022,2023
- 25 Доля сельского хозяйства в ВВП https://w3.unece.org/PXWeb/ru/Table?Indi catorCode=6
- 26 Доля сельского хозяйства в ВВП в стоимостном выражении https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?end=2023&locations=KZ &name_desc=false&start=1990&view=chart
- 27 Статистика потребления мяса в Казахстане https://stat.gov.kz/ru/industries/labor-and-income/stat-life/publications/196861/
- 28 Количество хозяйств по регионам Казахстана https://eldala.kz/novosti/kazahstan/13158-za-god-kolichestvo-fermerskih-hozyaystv-v-kazahstane-vyroslo-na-9
- 29 Бюро национальной статистики Республики Казахстан на начало 2025 года, общее поголовье скота и птицы https://stat.gov.kz/ru/industries/business-statistics/stat-forrest-village-hunt-fish/publications/340937/
- 30 Бюро национальной статистики Республики Казахстан на начало 2025 года,
- наличие кормов в сельхозпредприятиях по видам https://stat.gov.kz/ru/industries/business-statistics/stat-forrest-village-hunt-fish/publications/287928/
 - 31 Министерство сельского хозяйства Республики Казахстан. Приказ от 30 января 2015 года № 7-1/68 «Об утверждении Правил идентификации сельскохозяйственных животных» р
- 32 Приказ и.о. Министра сельского хозяйства РК от 29 мая 2015 года № 7-1/496 https://adilet.zan.kz/rus/docs/V1500011845
- 33 Правила перевозки скота (2020) https://www.gov.kz/memleket/entities/akimat-beyneu/press/article/details/14721

- 34 Министерство сельского хозяйства. Об утверждении Правил организации проведения убоя сельскохозяйственных животных, предназначенных для последующей реализации: Приказ Министра сельского хозяйства Республики Казахстан от 27 апреля 2015 года № 7-1/370 https://adilet.zan.kz/rus/docs/V1500011591
- 35 Евразийская экономическая комиссия. О техническом регламенте Таможенного союза "О безопасности мяса и мясной продукции": Решение Совета Евразийской экономической комиссии от 9 октября 2013 года № 68 https://adilet.zan.kz/rus/docs/H13EV000068
- 36 Всемирная организация здравоохранения (ВОЗ). Food safety https://www.who.int/en/news-room/fact-sheets/detail/food-safety
- 37 Australian Meat Processor Corporation (AMPC). "Blockchain for the Meat Industry: Where and How?" (2020) https://www.ampc.com.au/media/nhxcf3vm/ampc_blockchainforthemeatindustrywhe

reandhow_finalreport.pdf

- 38 Fofiaid. Продукт 1138927 https://www.fofiaid.com/products/1138927.html
- 39 Буянов.С. "Почему дорожает мясо в Казахстане" (2025) https://eldala.kz/specproekty/21170-pochemu-dorozhaet-myaso-v-kazahstane
- 40 Кунапия. Г. "Цены на говядину в Казахстане рекордно выросли. При этом животноводы не хотят оставаться в бизнесе" (2025) https://informburo.kz/stati/ceny-na-goviadinu-v-kazaxstane-rekordno-vyrosli-pri-etom-zivotnovody-ne-xotiat-ostavatsia-v-biznese
- 41 Мустафина, А. С., Бимурзина, Л. А. Цифровизация АПК Казахстана в условиях перехода к "зеленой экономике" (2021), с. 136 https://ecogosfond.kz/wp-content/uploads/2024/04/CIFROVIZACIJa-APK-KAZAHSTANA-V-USLOVIJaH.pdf

Приложение А

СПРАВКА

о результатах проверки

г. Тараз года 01.12.2023

Жамбылской и Шуской транспортными прокурорами проведена проверка в деятельности Жамбылской областной территориальной инспекции Комитета ветеринарного контроля и надзора Министерства сельского козяйства Республики Казакстан (долее — Исипекция) по вопросам соблюдения законодательства о ветеринарном контроле, антикоррупционного законодательства за 2022-2023 годы.

Юридический адрес Инспекции — Жамбылская область, город Тараз, улица Пушкина, 140Б, БИН 991040002627.

Руководитель - Коекеев Жандар Миятулы (пизичен приказом от 10.06.2019).

Инспекция является территориальным подразделением, находящийся в ведении Комитета ветеринарного контроля и надзора МСХ (положение утверждено приказ и.о. Министра сельского хозяйства Республики Комитета от 31.07.2015 года №16-05/715) .

Инспекция формирует и реализует государственную политику в области ветеринарии и безопасности пищевой продукции, подлежащей ветеринарно-санитарному контролю и надзору.

К основным задачам Инспекции относится выполнение регулятивных, реализационных и контрольных функций, а также участие в выполнении стратегических функций в области ветеринарии и безопасности пищевой продукции, подлежащей ветеринарно-санитарному контролю и надзору; защита животных от болезней и их печение; охрана здоровья населения от болезней, общих для животных и человека и др.

В рамках проверки выявлены факты неэффективного использования бюджетных средств, выдача незаконных ветеринарных сертификатов, дисциплинарного проступка, дискредитирующего государственную службу и др.

Государственные услуги.

За проверяемый период Инспекцией и территориальными отделениями оказаны 5039 государственных услуг (2022 n = 2682, 2023 n = 2387), из них отказано по 173 заявкам (2022 n = 119, 2023 n = 54).

Согласно пп.1 п.2 ст.5 Закона «О государственных услугах» (делее – Закон) услугодатели обязаны оказывать государственные услуги в соответствии с подзаконными нормативными правовыми актами, определяющими порядок оказания государственных услуг:

В п.8 Правил присвоения учетных номеров объектам производства, осуществляющим выращивание животных, заготовку (убой), хранение, переработку и реализацию животных, продукции и сырья животного происхождения, а также организациям по производству, хранению и реализации ветеринарных препаратов, кормов и кормовых добавок (утвержден приклюм Министра сельского холяетия от 23.01.2015 года №7-1/37) указано, что работник канцелярии услугодателя в день поступления осуществляет регистрацию заявления и направляет его руководителю услугодателя, которым назначается ответственный работник.

Однако, в рамках проверки установлено, что вышеуказанные требования исполняются не на должном уровне

В частности, заявка ИП «Үй тас» от 05.07.2023 года зарегистрирована только 10.07.2023 года, т.е. по истечению 5 дней.

Аналогичные нарушения выявлены по заявкам КХ «Кайырбек» от 05.07.2023 года (зарегистрирована 10.07.2023), КХ «Болашақ» от 03.07.2023 года (зарегистрирована 04.07.2023), Д.Омуралиевой, С.Сагадилова, Б.Кибраева от 20.06.2023 года (зарегистрирована 21.06.2023), КХ «Айханым» от 15.06.2023 года (зарегистрирована 16.06.2023), Т.Шабалкина от 14.06.2023 года (зарегистрирована 15.06.2023), по заявкам Н.Кирилова, К.Кусайнова, А.Кирилова, Б.Касабаевой, Н.Орынбекова от 12.06.2023 года (зарегистрирована 13.06.2023), А.Есбаева от 31.01.2023 года (зарегистрирована 13.06.2023), А.Есбаева от 31.01.2023 года (зарегистрирована 01.02.2023).

Согласно п. 8 Приложения №1 Правил выдачи ветеринарных документов и требований к их бланкам (утвержден приклом Министра сельского хомийства от 21.05.2015 года №7-1/453) к перечию документов и сведений, истребуемых у услугополучателя, для оказания государственной услуги относится колия документа, подтверждающего опляту за бланк ветеринарного сертификата

Вместе с тем, 10.11.2023 года Жуалынской территориальной инспекцией одобрена заявка ИП «Ринат» без предоставления копии документа, подтверждающего оплату за бланк ветеринарного сертификата на перевозку врупного рогатого скота.

Кроме того, в январе 2023 года территориальными подразделениями Инспекции при оказании государственной услуги «Выдача ветеринарного сертификата на перемещаемые (перевознике) объекты во время экспорта» не регистрировали копии документа, подтверждающего оплату формы ветеринарного сертификата от получателей государственных услуг в единой автоматизированной системы управления отраслями агропромышленного комплекса «e-Agriculture» (всего вызвлено 85 фактов).

Также спедует отметить, что в перечне основных требований к оказанию государственной услуги «Выдача ветеринарного сертификата на перемещаемые (переволимые) объекты во время экспорта» не предусмотрено истребование ветеринарной справки

При этом, проверкой установлено, что в 2022-2023 годы при предоставлении этой государственной услуги по всем заявкам ветеринарные справки включены в информационную систему «e-Agriculture» (мясо и мисяме продукты домаших в диких животных, мясо птицы, молочные продукты и др.).

Справочно: в 2022 году предоставлено 1397 государственных услуг, в текущем году – 1498.

Необходимо отметить, что ветеринарные справки, вводимые в информационную систему, не соответствуют сведениям, предоставленные получателем для получения ветеринарного сертификата.

К примеру, в приложенных к заявке документах ИП «ТиМ» от 10.11.2023 года для получения услуги «Выдача ветеринарного сертификата на перемещаемые (перевольные) объекты во время экспорта» (Таракская территориальная инспекции) указан экспорт продукта в Российскую Федерацию, при этом, в информационную систему приложена ветеринарная справка с данными по транспортировке иных продуктов в город Шымкент

Важно знать, что одним из приоритетных направлений административной реформы в Республике Казакстан является повышение качества государственных услуг, важнейшим инструментом которого является контроль их оказания.

Неэффективное использование бюджетных средств.

Согласно Приложению №1 «Об утверждении натуральных норм обеспечения ветеринарного контрольного поста, фитосанитарного контрольного поста, а также государственного инспектора по карантину растений, государственного ветеринарно-санитарного инспектора» (утвержден прикозом заместителя Премьер-Министра — Министра сельского комийства Республики Кимистра от 05.06.2018 года №240) установлены нормы положенности оборудования для лаборатории ветеринарно-санитарной экспертизы.

Лаборатории ветеринарно-санитарной экспертивы для ветеринарных контрольных постов вблизи границы должны быть обеспечены спедующими оборудованиями - термометр для животных, термоконтейнер, микроскоп биологический, осветитель для микроскопа, баня водяная лабораторная, трихинеллоскопии, TEDMOCTAT. компрессори для шкаф сущильный стерилизационный, дистиплятор, весы лабораторные, термометры лабораторные (для мяся с метаплическим стилетом), дозиметр, колодильник бытовой, пампа. бактерицидная, овоскоп, гомогенизатор или мясорубка пабораторная, анализатор «Лактан», прибор для определения степени чистоты молока, плитка электрическая двух камфорная, морозильная kamepa, психрометр гигрометрический.

Вместе с тем, в рамках проверки ветеринарных контрольных постов установлено отсутствие достаточного оборудования для проведения экспертизы, к примеру, термометр для животных, термомонтейнер, осветитель для микроскопа, колодильник бытовой, анализатор «Лактан», морозильная камера не имеются.

Согласно инвентаризационной описи от 02.01.2023 года по области имеются 3 мобильных вагончика с 16 наименованиями оборудований (место 48 ма пунктах пропуска Карасу, Сыпатай батар и Айша-баба).

Указанные оборудования поступили в Инспекцию в 2018 году по первоначальной стоимости 3,29 млн тенге (на сегодня остаточная стоимость 1,56 млн тенге).

Вместе с тем, эти оборудования уже на протяжении 5 лет не используются, находятся в заводской упаковке и по назначению не применяются.

Справочию: По этому поводу руководитель Ивелекции <u>Коскоев</u> Ж. поясилет, что сотласно ст.13 Закона «О ветеринарни» проведение ветеринарно-санитърной экспертизы продуктов и сыръм животного происхождения относител в видам предпринимательской деятельности в области ветеринарни, осуществляемые физическими и корядическими лицами. Также для проведения ветеринарно-санитърной экспертизы отсутствуют специалисты с необходимой киллифинацией.

На сегодня идет процесс передачи всех оборудований в РГП на <u>ПВХ</u> «Республиканская ветеринарная лаборатория» (письмо и.о. председателя Комитета Абылбасы Б. от 02.11.2023 года).

В связи с чем, некоторые нормы приказа заместителя Премьер-Министра — Министра сельского козяйства от 05.06.2018 года №240 противоречат Закону «О ветеринарии», а все закупленные оборудования по этому Приказу ввиду вышеуказанных причин по назначению не применяются, что свидетельствует о неэффективном использовании бюджетных средств (марушение принципа эффективности вепользования бюджетных средств, предусмотренного п.12 ст.4 Бюджетного кодежев).

Кроме того, средства измерения не прошли метрологическую поверку.

Так, в соответствии с п.1 ст.19 Закона «Об обеспечении единства измерений» средства измерений, являющиеся объектами государственного метрологического контроля в соответствии со ст.22 настоящего Закона, после утверждения их типа или метрологической аттестации и регистрации в реестре государственной системы обеспечения единства измерений перед выпуском в обращение, после ремонта, в период эксплуатации подвергаются поверке.

Согласно п.5.3.2 СТ РК 2.4-2019 средства измерений, находящиеся на длительном хранении, срок которого превышает межповерочный интервал, периодической поверке могут не подвергаться, при условии соблюдения требований к их консервации и хранению.

Передача средств измерений на длительное хранение должна быть оформлена актом с указанием даты последней поверки средств измерений, условий их хранения, а также вида консервации и упаковки.

Однако, акты о длительном хранении (консервации) Инспекцией не представлены, т.е. не оформлены.

В коде проверки контрольного ветеринарного поста «Айша Биби» установлено, что средства измерения (термомстри, весы) хранятся в упаковках производителя на ветеринарном посту и не подготовлены для длительного хранения.

По пояснению руководителя Инспекции <u>Коекеева</u> Ж. используются только термометры для измерений температуры животных.

В ходе проверки установлено, что Инспекцией не проведены поверки вышеуказанных средств измерений, что влечет административную ответственность в соответствии с ч.1 ст.419 КоАП (нарушение законодительства Республики Казахстан об обеспечения единеты измерений).

Обеспечение ветеринарного контрольного поста.

- В соответствии с п.6 Правил осуществления государственного ветеринарно-санитарного контроля и надзора на ветеринарных контрольных постах (приложение м.6 к примару Министро сельсного комиства от 30.10.2014 года м.7-1/559, далее правил» государственные ветеринарно-санитарные инспекторы ВКП при перемещении перемещаемых (перевольных) объектов осуществляют документарный государственный ветеринарно-санитарный контроль, физический государственный ветеринарно-санитарный контроль (вемотр) перемещаемых (переволяных) объектов) и пабораторный государственный ветеринарно-санитарный контроль (осмотр (премещаемых контроль (осмотр проб (при необходимости) для побораторного неследования).
- В п.11 Правил указано, что отбор проб для лабораторного исследования осуществляется при обнаружении:
- изменении клинического состояния животного с последующей их изоляцией. Осуществляется отбор проб крови, слюны, носовых истечений, слизи, экскрементов с целью исключения особо опасных болезней животных.
- падежа животного (отбор питотогического мотериали) с целью установления диагноза;

3) выявления видимых органолептических изменений при досмотре перемещаемых (перевознамих) объектов (признами дефростации, порчи, нарушения переспостности упановки, маркировки, нашичие посторовнего запаха, подтеков перемещаемых (перевознамых) объектов).

Отобранные материалы направляются в аккредитованную ветеринарную лабораторию с сопроводительным документом для проведения исследований.

Согласно п.3 Правил отбора проб перемещаемых (перевозимых) объектов и биологического материала (утвержден приказом Министра сельского мозийства от 30.04.2015 года №7-1/393) отбор проб перемещаемого (перевозимого) объекта и биологического материала осуществляется на всех видах транспортных средств; при транспортировке (перемещения), погрузке, выгрузке перемещаемых (перевозимых) объектов и др.

В п.9 этих Правил отражен список инструментов, оборудований и упаковочных материалов, необходимых для отбора проб, которые в действительности не имеются на ветеринарных контрольных постах.

Таким образом, работники Инспекции фактически лишены возможности для лабораторного государственного ветеринарно-санитарного контроля.

Содержание служебного автотранспорта.

Нормативы содержания служебных автомобилей и порядок списания горюче-смазочных материалов производится по фактическому пробегу автомобиля на основании путевых листов в соответствии с нормами Приложения №2 «Об утверждении норм расходов горооче-смазочных материалов для государственных органов Республики Казахстан и расходов на содержание автотранспорта» (утвержден постановлением Правительства Республики Казахстан от 11.08.2009 года №1210, с въменением в дополнениями Постановлением Правительства Республики Казахстан от 12.03.2014 года №228, далее - Постановление №1210).

В сипу Натуральных норм обеспечения государственных органов служебными и дежурными автомобилями, тепефонной связью, офисной мебелью и площадями для размещения аппарата государственных органов (утвержден приказом Министра финансов Республики Камжетов от 17.03.2015 года №179, далее — Прима №179) норма раскодов ГСМ в месяц и норма пробега для автомобилей транспортного обслуживания на 1 единицу транспортане должно превышать 2100 км.

Выборочной проверкой установлено, что за 10 месяцев 2023 года старшему поста «Сыпатай батыра» (Меркенский ройон) Р.Сарбасову выданы тапоны по норме 11,5л/100км в количестве 2280 литров (в месяц 240л*7 = 1680 л, 200л*3 = 600 л).

Однако, в период август-октябрь т.г. закрепленный автомобиль марки «LADA 21214-186» с госномером Н405СН (прикоз об утверждения и закрепления на Сарбасова Р. от 03.02.2023 года №20, а также договор о материальной ответственности от 03.02.2023 года) находился не в рабочем состоянии по причине поломки ходовой части автомобиля.

В нарушение Базовых норм расходов горюче-смазочных материалов для легковых автомобилей Постановления №1210, приложение 1 к Приказу №179 (примечания, где лимиты пробега ве более 2100 км/месяц на 1 единицу транспорта) в период положки автомобиля необоснованно произведено списание ГСМ в количестве 600 литров на сумму 123 тыс. тенге (при 204,99 гг за литр).

Справочим: представлены путемые листы и отчеты утвержденные руководителем за вигует -31.08.2023, за сентибрь - 30.09.2023, за октибрь - 31.10.2023. Выдан бентии АИ-92 за клюдый месяц и количестве по 200 л * 41 тыс. тенте на общую сумму 123 тыс. тенте.

По пояснению Р.Сарбасова бензин израсходован им на личный автомобиль. Нарушение трудового законодательства и Коллективного договора.

В соответствии с п.5.2 Коллективного договора на 2022-2023 годы время работы для руководителей, государственных служащих, административно-козяйствующего персоналане превышает 40 часов в неделю.

В приложении №1 к Коллективному договору указаны начало работ 9:00 часов, перерыв 13:00-14:30 часов, конец рабочего дня 18:30 часов, выходные - суббота, воскресенье.

Согласно п.4 ст.71 Трудового кодекса (далее - Казекс) продолжительность ежедневной работы не может превышать 8 часов, за исключением случаев, предусмотренных настоящим Кодексом и иными законами Республики Казаустан.

Кроме того, в п.5.6 Коллективного договора указано, что заработная плата за работу в праздничные и нерабочие дни выплачивается в двойном размере в порядке, предусмотренном ст.109 Кодекса. По усмотрению сотрудников ему могут быть предоставлены другие выходные.

Ветеринарно-санитарные инспекторы на посту «Айша биби» А.Сейсенбек, Е.Бериков и Б.Бейсембаев в августе, сентябре и октябре 2022-2023 гг. (утвержден руководителем Ж.Коскесным и п.о. руководителя М.Ковабсковым) отработал 8-10 дней, т.е. 24 часа в сутки по графику службы.

В указанный период эти сотрудники не получили дополнительных выплат за сверхурочную работу в праздничные и выходные дни, а режим рабочего времени, указанный в Коллективном договоре, работодателем не соблюдался.

В соответствии с nn.6 n.1 ст.1 Кодекса сменная работа — это работа в две либо в три или четыре рабочие смены в течение суток.

Кроме того, п.4 ст.73 Кодекса привлечение работника к работе в течение двух рабочих смен подряд запрещается, за исключением случаев, предусмотренных ст.86 настоящего Кодекса.

Продолжительность ежедневного (междусменного) отдыха работника между окончанием работы и ее началом на следующий день (работую смеку) не может быть менее 12 часов (стяз колеко).

В соответствии с табелем расчета рабочего времени окранников Таразской городской территориальной Инспекции в сентабре — октабре 2023 года (утвержден руководителем Ж.Косисским и н.о. руководителя м.Косибеновым) К.Иманханов, К.Дауталиев и А.Тузельбек осуществляли трудовую деятельность в одну смену в 15 и 24 часа.

За нарушение обязательства по коллективному договору предусмотрена административная ответственность по ч.З ст.97 КоАП (влечет штрас) на лиц, виновных в невыполнении обязательств по воллективному договору в размере 400 МРП).

Незаконные ветеринарные сертификаты.

В соответствии с Главой 4 «О применении ветеринарно-санитарных мер в Евразийском экономическом союзе» (утвержден решением Компосии Евразийского экономического союза от 18.06.2010 года № 317, далее — Решение компосии К ЕВОЗУ Н2 таможенную территорию Евразийского экономического союза и (или) перемещению между государствами-членами допускаются здоровые убойные крупный рогатый скот, овцы и козы, не вакцинированные против бруцеллеза, лептоспироза и оспы овец и коз с территорий свободных от заразных болезней животных.

Справочно: Положение устанавлимост порядок осуществления контроля государственными органами и учреждениями тосударств - членов Еврапийского экономического союза, осущестскопциям деятельность в области встеринарии, за подконтрольными товарами на таможенной границе Союза и на таможенной территории Союза и целях недопущения внога на таможенную территорию Союза и перемещения (переволян) опасных для здоровы человека и жимотных подконтрольных товаров.

Однако, в нарушение данных норм в 2023 году Меркенской районной Инспекцией выданы 3 сертификата на перевозку убойного крупного рогатого скота вакцинированного против указанных болезней.

В частности, 09.02.2023 года государственным ветеринарно-санитарным инспектором Меркенского района Бейсеновой К.К. выдан ветеринарный сертификат КХ «АКА и К» за №06-05-00001903 на перевозку в Кыргызскую Республику убойного крупного рогатого скота в количестве 45 голов, вакцинированного против лептоспироза.

Изучением материалов установлено, что в ветеринарной справке №КZН05-00071175 (выдая заведующим веспункта Арыстанбаевым Г.К.) отражен список вакцинированных КРС от лептоспироза (к примеру, самиу КРС №КZН146149797 проведена иммунисации против дептоспироза и др.).

Этим же инспектором незаконно выданы ветеринарные сертификаты за №06-05-00001897 от 24.01.2023 года (13 годов КРС), №06-05-00001898 от 26.01.2023 года (37 годов КРС).

Аналогичные нарушения не единичны и носят системный характер (в 2022 году покально выданы сертификаты с вакцинированными КРС от дептоспироза).

Другой пример, 29.05.2023 года государственным ветеринарно-санитарным инспектором Жамбылского района <u>Шамгуновым</u> Д.З. выдан ветеринарный сертификат КХ «Шайсламов Мадияр» за №06-02-00002328 на перевозку в Кыргызскую Республику убойного мелкого рогатого скота (оним и колы) в количестве 60 голов, вакцинированного противоспы.

Тогда как, в ветеринарной справке №КZH02-00028733 (выдая заведующим встлукита Байдыхановым И.О.) отражен список 50 вакцинированных овец от осны.

Согласно Главы 10 Решения Комиссии к ввозу на таможенную территорию Евразийского экономического союза и (или) перемещению между государствами-членами допускаются только племенные, пользовательные и спортивные здоровые лошади важцинированные против гриппа лошадей вакциной, соответствующей стандартам, указанным в Руководстве по диагностическим тестам и вакцинам для наземных животных МЭБ, в период между 21-м и 90-м днем до отправки первично или повторно.

Вместе с тем, вышеуказанные нормы уполномоченным органом не соблюдаются.

Так, 14.08.2023 года государственным ветеринарно-санитарным инспектором г.Тараз Бердибековым Е.Б. незаконно выдан ветеринарный сертификат №06-11-00002181 КГУ «Профессиональный клуб по национальным

видам спорта «Аулие-Ата» на 10 голов спортивных лошадей без вакцинации против гриппа лошадей

Подобные нарушения в текущем году допущены государственным ветеринарно-санитарным инспектором Жуалынского района Жакипбековым Т.З. (ветеринарный сертификат №06-03-00002280 от 13.04.2023 года КХ «Сырлыбай» - 2 годоны) .

Таким образом, в действиях инспекторов Бейсеновой К.К., Бердибекова Е.Б., Шамгунова Д.З. и Жакипбекова Т.З. содержатся признаки двециплинарного проступка, двекредитирующего государственную службу, предусмотренного пп.4 п.1 ст.50 Закона «О государственной службе Республики Казахстан», выразившиеся в оказании неправомерного предпочтения физическим и коридическим лицам при принятии решений.

Вследствие попустительского отношения работников Инспекции имеют место системные проблемы в осуществлении эпизоотического контроля и надзора, мониторинга и прогнозирования вспышек особо опасных заболеваний.

К примеру, в сентябре тл из-за лептоспироза произошел массовый падеж: свота в селе Майтобе Таласского района Жамбылской области, погибло свыше 20 голов КРС и сотни голов овец.

Ветеринарная безопасность является критерием защищенности населения от заболеваний, обеспечения их доброкачественной и безопасной продукцией животного происхождения, сохранения рентабельности производства в животноводстве и пищевой промышленности.

Алминистративная практика

Проверкой установлено, что в деятельности Инспекции применяется неправомерная практика увода от ответственности юридических лиц, вместо которых к ответственности привлекаются физические лица.

В частности, должностные лица Инспекции за отсутствия ветеринарного свидетельства или маркировки товара ограничиваются лишь привлечением к административной ответственности водителей грузовых АТС, собственниками которых являются юридические лица (напагаемый штраф на юридическое лицо заячительно выше в составляет от 172 тыс. до 690 тыс. теппе).

Спедует отметить, все перемещаемые грузы через ВКП имеют правоустанавливающие документы (СМР, ТТН, счет фактура и т.д.).

Так, при проверке подконтрольного товара находящегося на грузовом автомобиле «Mersedes-benz», собственником которого является ОсОО «РРМ групп», отсутствовали маркировки товара (мясо хурицы).

В связи с этим в отношении водителя составлен протокол (000082) об административном правонарушении и наложен штрафа в размере 20 МРП, однако, ответственность за маркировку груза несет сам собственник, т.е. юридическое лицо.

Аналогичный увод от ответственности выявлен по 3 административным делам (список примагается), что является административным проступком, дискредитирующий государственную службу.

Незаконный ввоз подконтрольных товаров.

В соответствие с приказом МСХ от 18.04.2019 года №158 утвержден перечень пунктов ветеринарного контроля на приграничной территории

Республики Казахстан — пункты пропуска «Айша бибі», «Сыпатай батыр», «Карасу» и «Кордай».

На пунктах пропуска «Аухатты» и «Сортобе» ветеринарный контроль осуществляется только по сообщению уполномоченных органов (дгд, пс кнв).

В пунктах ветеринарного контроля «Айша бибі», «Сыпатай батыр», «Карасу» и «Кордай» задействованы специалисты отдела по контролю за приграничными постами в количестве 31 человек.

В период с 2022 по 2023 годы с Кыргызской Республики на территорию Республики Казакстан ввезено следующее количество продукции животного происхождения (подконтрольной продукции):

Ne	Наименование продукции	2022 год (в тоннах)	2023 год (в тоннох)
1	Замороженная рыба и рыбная продукция	10195,98	5560,58
2	Готовая молочная продукция	36201,68	28610,57
3	Готовая мясная продукция	270,03	86,84
4	Мед плажиный	84,1	36,84

Всего за проверженый период Инспекцией рассмотрены 206 административных дел (2022 г. - 108, т.г. - 98).

Согласно Положению о Едином порядке осуществления ветеринарного контроля на таможенной границе Таможенного союза и на таможенной территории Таможенного союза (утверждено Решением Компесии таможенного союза от 18.06.2010 года №317, далее — Решение КТС №317) при ввозе, вывозе и транзите в отношении подконтрольных товаров применяются документарный, физический и лабораторный виды контроля.

По результатам досмотра составляется соответствующий акт по установленной форме и принимается одно из следующих решений в отношении подконтрольных товаров: о пропуске, о приоставовке движения, о запрете ввоза, о возврате.

Проверкой выявлены факты отсутствия контроля выдворения из страны транспортных средств по отдельным случаям выявления инспекторами ветеринарного контроля о несоответствии ввозимого груза требованиям законодательства с составлением актов возврата (ратворога).

К примеру, пограничной службой 17.02.2023 года в КП «Кордай» задержан АТС марки «Фольксваген Пассат» ГРНЗ 04 КС492AGF (вединень граждания Кыргызстана Асаков Б.), следовавший из Кыргызстанав Казаустан.

В рамках проверки установлено отсутствие ветеринарного сертификата (онцы – 2 головы, на сумму 140 000 тенте), в связи с чем АТС передан в ветеринарную службу по Кордайскому району для принятия мер (составлен акт №46 от 17.02.2023).

По материалам установлено, что инспектором <u>Таубалдиевым</u> Р. водитель Асанов Б. привлечен к ответственности по п.З ч.1 ст.406 КоАП, с дальнейшим принятием решения о возврате товара.

Справочно: с 19.10.2011 года въедены временные ограничения на ввоз в Казахстан восприниченых к ящуру веньотных (КГИ АПК №18-02-37/8041-и от 19.10.2011).

Однаво, по предоставленным сведениям Департамента ПС КНБ Жамбылской области указанный АТС с товаром не подвергался возврату в Кыргызстан. Таким образом, должностное лицо Инспекции способствовал незаконному ввозу подконтрольного товара на территорию нашей страны.

Аналогичные факты зафиксированы в 2022 году (4 факта).

Бездействие инспекторов усугубляется игнорированием положений международных правовых актов, предписывающих странам ЕАЭС руководствоваться Ревстром организаций и лиц, осуществляющих производство, переработку и (или) хранвние подконтрольных товаров, в отношении которых введены ограничения на ввоз в Таможенный союз, нивелируются решения Комитета ветеринарного контроля и надзора о запрете ввоза некоторых видов продукции в связи с их высокой степенью опасности.

С 21.09.2012 года введен запрет на ввоз в Республику Казахстан мяса птицы и всех видов птицеводческой продукции из КНР (указание КНКН №16-02-15/658-и от 21.09.2012).

Согласно Реестру организаций и лиц Кыргызской Республики, осуществляющих производство, переработку и (нии) хранение подконтрольных товаров, перемещающихся по территории государств-членов ЕАЭС, в отношении производителя ОсОО «Солто Трейд» выставлено временноеограничения.

Между тем, по сведениям Управления экспортного контроля ДГД Жамбылской области через ветеринарный контрольный пост (долее — вкл) «Карасу» неоднократно в период с 07.02.2023 год по 12.02.2023 года ОсОО «Солто Трейд» импортирована птицеводческую продукция в количестве 88,7 тони на общую сумму 23,5 млн тенге.

Данная продукция подлежала возврату, однако это осталось вне поля врения Инспекции.

Это свидетельствует о полном отсутствии контроля со стороны должностных лиц Инспекции за въезжающими подконтрольными товарами в Казакстан.

Такие обстоятельства создают предпосылки для коррупционных рисков.

Кроме того, несмотря на наличие запрета в нюле 2023 года инспекторами ВКП «Сыпатай батыр» разрешен въезд птицеводческой продукции с Кыргызской Республики, имевшей ограничения китайской компании «Henan <u>Hunying</u> Agriculture Development Co. LTD».

Спедует отметить, что только с августа 2023 года официально открыта возможность поставок птицеводческой продукции (мясо утки) производства предприятия «Henan Huaying Agriculture Development Co. LTD» (меносозоба), состоящего в Реестре организаций и лиц, осуществляющих производство, переработку и (или) хранение подконтрольных товаров (продукции), ввозимых на таможенную территорию Таможенного союза Республики Казакстан (учатавие КВКН № 17-02-10/1776-и от 31.07.2023).

Между тем, по сведениям Инспекции за 7 месяцев т.г. на ПП «Карасу» проверены 1640 ATC с подконтрольными товарами.

Тога как, в сведениях ДГД по Жамбылской области через ПП «Карасу» за аналогичный период импортированы подконтрольные товары на1764 ATC.

К примеру, с начала т.г. через ВКП «Карасу» кыргызские отправители ОсОО «БИРИМДИК КОМПАНИ», ОсОО «Солто Трейд», ОсОО «УМАР КОРПОРЕЙШН», ОсОО «МИТ ПАКЕРС», ИП «Джамалидинова А.А.» и <u>ОсОО</u> «ФУД ЛАЙН ГРУПП» через ВКП «Карасу» не законно импортировали более 2 700 тони мясо птицы (утавые грудки, филе и т.д.) на сумму более 900 млн. тенге

Инспекторами на ВКП «Карасу» АТС вышеуказанные фирмы не проверялись и не регистрировались в журнал «Учета перемещения через пункт пропуска», а также в информационную систему «ЕАСУ».

Руководством Инспекции не проводятся ежемесячные и ежеквартальные сверки с уполномоченными органами (дгд и по кнв), что также свидетельствует о бездействии и полном отсутствии контроля.

На сегодняшний день ветеринарная инспекция подтверждает наличие «бесконтрольности» импортируемых продуктов на территории городов Алматы, Тараз, Шымкент и Туркестанской области, т.е. все подконтрольные грузы (импортные мясо птицы) без указания классификаторов открыто продаются на оптово-розничных рынках и магазинах. Их ежедневно употребляет население города и области, также данные продукты сдаются по тендерам в детские сады и другие государственные учреждения.

Это свидетельствует о том, что мясо птиц и других животных реализуется без каких-либо обязательных контрольных анализов и других соответствующих мероприятий.

Таким образом, деятельность Инспекции по реализации возложенных функций на казахстанско-кыргызской границе не соответствует предъявляемым требованиям. Отдельными участниками ВЭД на твуриторию Казахстана незаконно ввозится продукция животного происхождения, что приводит к угрозам национальной безопасности.

вывод:

На основании вышеизложенного, предлагается:

- информировать Главную транспортную прокуратуру о результатах проверки:
- внести авты надзора в уполномоченные государственные органы для устранения выявленных нарушений законности и привлечения виновных лиц к установленной законом ответственности;
- внести представление об устранении нарушений законности в адрес Комитета ветеринарного контроля и надзора Министерства сельского хозяйства Республики Казахстан;
- по согласованию с Главной транспортной прокуратурой решить вопрос о регистрации материалов в КУИ Шуской транспортной прокуратуры.

Приложение: подтверждающие документы на __ листак.

Старший прокурор Шуской транспортной прокуратуры

Ч.Нурасилов

Прокурор Шуской транспортной прокуратуры Канатбаев

Α.

Заместитель Жамбылского транспортного прокурора Жораев	H.
Старший прокурор Жамбылской транспортной прокуратуры	c

Сейітжанов